Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Some Biomarkers in Carp (Cyprinus carpio Linnaeus, 1758) Depending on Water and Sediment Pollution of Atatürk Dam Lake

Yıl 2021, Cilt: 10 Sayı: 3, 744 - 753, 17.09.2021
https://doi.org/10.17798/bitlisfen.898021

Öz

Bu çalışmada, Türkiye’nin en büyük yapay gölü olan ve Adıyaman ile Şanlıurfa’nın sulama ve enerji ihtiyacını karşılayan Atatürk Baraj Gölü’nün bazı çevresel kirlilik parametreleri, gölde yaşayan ve halk tarafından ekonomik olarak tüketilen sazan balıklarında bazı biyokimyasal verilerle değerlendirildi. Atatürk Baraj Gölü’nün kıyısının olduğu Kahta ve Bozova ilçelerinden eş zamanlı su, sediment ve balık örneklemeleri yapıldı. Suda bazı fizikokimyasal parametrelerle birlikte su, sediment ve sazanların kas örneklerinde çeşitli metallerin kalıntı analizleri yapıldı. Sazanların karaciğer dokusunda toplam antioksidan kapasitesi (TAC) ve toplam oksidan süpürme kapasitesi (TOSC) seviyeleri, solungaç dokusunda ise Na+/K+ATPaz, Mg2+ATPaz ve Ca2+ATPaz aktiviteleri tayin edildi. Çalışmanın sonucunda, suda Cd, Cr ve Cu seviyelerinin, sedimentte Cd ve Cu seviyelerinin, sazanda ise Pb ve Cd seviyelerinin maksimum kabul edilebilir konsantrasyonları aştığı gözlendi. Biyokimyasal parametrelerden oksidatif stres indeksi ile TOSC seviyesi, Kahta’daki balıkların karaciğerinde Bozova’dakilere göre önemli derecede yüksek bulundu. Na+/K+ATPaz aktivitesi, Kahta’daki balıkların solungacında önemli oranda inhibisyona uğradı. Tüm bu kirlilik parametreleri ile biyokimyasal veriler birlikte değerlendirildiğinde, Kahta’nın su, sediment ve sazanlarının Bozova’dakilere göre toksik metallerle daha fazla kontamine olduğu ve sazanların oksidatif stres altında olduğu, dolayısıyla bu bölgeden avlanan tüketicilerin sağlığı için bir tehdit unsuru olabileceği söylenebilir.

Kaynakça

  • [1] Alhas, E., Oymak, S.A., Karadede-Akin, H. 2009. Heavy metal concentrations in two barb, Barbus xanthopterus and Barbus rajanorum mystaceus from Atatürk Dam Lake, Turkey. Environmental Monitoring and Assessment, 148: 11-18.
  • [2] Fırat, Ö. 2016. Evaluation of metal concentrations in fish species from Atatürk Dam Lake (Adiyaman, Turkey) in relation to human health. Fresenius Environmental Bulletin, 25: 3629-3634.
  • [3] Gürbüz, M., Çelik M.A., Gülersoy, A.E. 2013. An Examination of Effect of Atatürk Dam Lake on Agricultural Patterns in Bozova District (1984-2011). Gaziantep University Journal of Social Sciences, 12 (4): 853-866
  • [4] Ozmen, M., Gungordu, A., Kucukbay, F.Z., Guler, E.R. 2006. Monitoring the effects of water pollution on Cyprinus carpio in Karakaya Dam Lake, Turkey. Ecotoxicology, 15: 157–169. doi: 10.1007/s10646-005-0045-1.
  • [5] Mendoza-Carranza, M., Sepúlveda-Lozada, A., Dias-Ferreira, C., Geissen, V. 2016. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, 210: 155-165.
  • [6] Gauthier, L., Tardy, E., Mouchet, F. and Marty, J. 2004. Biomonitoring of the genotoxic potential (micronucleusassay) and detoxifying activity (EROD induction) in the River Dadou (France), using the amphibian Xenopus laevis. Science of the Total Environment, 323: 47-61.
  • [7] Tlili, S., Jebali, J., Banni, M., Haouas, Z., Mlayah, A., Helal, A.N., Boussetta, H. 2010. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environmental Monitoring and Assessment, 168: 285-298.
  • [8] Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., Winston, G.W. 2002a. Oxidative Stress in Ecotoxicology: from the Analysis of Individual Antioxidants to a More Integrated Approach. Marine Environmental Research, 54: 419-423.
  • [9] Regoli, F., Pellegrini, D., Winston, G.W., Gorbi, S., Giuliani, S., Virno-Lamberti, C., Bompadre, S. 2002b. Application of Biomarkers for Assessing the Biological Impact of Dredged Materials in the Mediterranean: the Relationship Between Antioxidant Responses and Susceptibility to Oxidative Stress in the Red Mullet (Mullus barbatus). Marine Pollution Bulletin, 44: 912-922.
  • [10] Pinchuk, I., Shoval, H., Dotan, Y., Lichtenberg, D. 2012. Evaluation of antioxidants: scope, limitations and relevance of assays. Chemistry and Physics of Lipids, 165: 638-47.
  • [11] Regoli, F. 2000. Total Oxyradical Scavenging Capacity (TOSC) in Polluted and Translocated Mussels: a Predictive Biomarker of Oxidative Stress. Aquatic Toxicology, 50: 351-361.
  • [12] Khangarot, B.S. 1992. Copper-induced hepatic ultrastructural alterations in the snake-headed fish, Channa punctatus. Ecotoxicology and Environmental Safety, 23: 282-293.
  • [13] Grosell, M., Wood, C.M., Walsh, P.J. 2003. Copper homeostasis and toxicity in the elasmobranch Raja erinacea and the teleost Myoxocephalus octodecemspinosus during exposure to elevated waterborne copper. Comparative Biochemistry and Physiology Part C, 135: 179-190.
  • [14] Loro, V.L., Nogueira, L., Nadella, S.R., Wood, C.M. 2014. Zinc bioaccumulation and ionoregulatory impacts in Fundulus heteroclitus exposed to sublethal waterborne zinc at differentsalinities. Comparative Biochemistry and Physiology Part C, 166: 96-104.
  • [15] Farkas, A., Salanki, J., Specziar, A. 2002. Relation between growth and the heavy metal concentration in organs of bream, Abramis brama L. Populating Lake Balaton. Archives of Environmental Contamination and Toxicology, 43: 236-243.
  • [16] Vinodhini, R., Narayanan, M. 2009. Biochemical changes of antioxidant enzymes in common carp (Cyprinus carpio L.) after heavy metal exposure. Turkish Journal of Veterinary and Animal Science, 33(4): 273-278.
  • [17] Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • [18] Atlı, G., Canlı, M. 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology, 20: 1861-1869.
  • [19] Atkinson, A., Gatemby, A.O., Lowe, A.G. 1973. The determination of inorganic ortophosphate in biological systems. Biochimica et Biophysica Acta, 320: 195-204.
  • [20] Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38: 1103-1111.
  • [21] Fırat, Ö., Alıcı, M.F. 2012. Assessment of Pollution in Ataturk Dam Lake (Adiyaman, Turkey) Using Several Biochemical Parameters in Common Carp, Cyprinus carpio L. Bulletin of Environmental Contamination and Toxicology, 89: 474-478.
  • [22] Karadağ, H., Fırat, Ö., Fırat, Ö., Use of Oxidative Stress Biomarkers in Cyprinus carpio L. for the Evaluation of Water Pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bulletin of Environmental Contamination and Toxicology, 92:289-293.
  • [23] Yoloğlu, E., Uçkun, M., Uçkun, A.A. 2018. Metal accumulation and biochemical variations in the freshwater mussels (Unio mancus) collected from Atatürk Dam Lake, Turkey. Biochemical Systematics and Ecology, 79: 60-68.
  • [24] SWQR, 2012. Surface Water Quality Regulation, Official Gazette No. 28483 dated November 30, 2012, Ankara.
  • [25] Ustaoğlu, F., Tepe, Y. 2018. Determination of Sediment Quality of Pazarsuyu Stream (Giresun, Turkey) by Multivariate Statistical Methods. Turkish Agriculture-Food Science and Technology Journal, 6 (3): 304-312.
  • [26] MacDonald, D.D., Ingersoll, C.G., Berger, T.A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, 39: 20-31.
  • [27] Krauskopf KB. 1979. Introduction to geochemistry. International series in the earth and planetary sciences. McGraw-Hill, Tokyo.
  • [28] Eqani, S., Kanwal, A., Ali, S.M., Sohail, M., Bhowmik, A.K., Ambreen, A., Ali, N., Fasola, M., Shen, H. 2016. Spatial distribution of dust-bound trace metals from Pakistan and its implications for human exposure. Environmental Pollution, 213: 213-222.
  • [29] ATSDR. 2012. Agency for Toxic Substance and Disease Registry. Toxicological profile for cadmium. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf
  • [30] FAO (Food and Agricultural Organization), 2003. Retrieved 2012. From Heavy Metal Regulations Faolex: http: //faolex.org/docs/pdf/eri 42405.pdf. WHO (World Health Organization). Evaluation of certain food additives and the contaminants mercury, lead and cadmium 2011 WHO Technical Report Series.
  • [31] Dural, M., Göksu, M., Özak, A. 2007. Investigation of heavy metal levels in economically important fish species captured from the Tuzla Lagoon. Food Chemistry, 102: 415-421.
  • [32] Waalkes, MP., Berthan, G. 1995. Handbook on Metal-Ligand Interactions of Biological Fluids. Vol. 2. New York, p. 471-482.
  • [33] Schmitt, C.J., Caldwell, C.A., Olsen, B., Serdar, D., Coffey, M. 2002. Inhibition of erythrocyte deltaaminolevulinic acid dehydratase activity in fish from waters affected by lead smelters. Environmental Monitoring and Assessment, 77: 99-119.
  • [34] Noureddine, D., Miloud, S., Abdelkader, A. 2005. Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology, 207 (3): 363-368.
  • [35] Patel, M., Rogers, J.T., Pane, E.F., Wood, C.M. 2006. Renal responses to acute lead waterborne exposure in the freshwater rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 80: 362-371.
  • [36] Saha, N., Zaman, M.R. 2013. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of rajshahi city, Bangladesh. Environmental Monitoring and Assessment, 185: 3867-3878.
  • [37] Oymak, S.A., Akin, H.K., Doğan, N. 2009. Heavy metal in tissues of Tor grypus from Atatürk Dam Lake, Euphrates River-Turkey. Biologia 64 (1): 151-155.
  • [38] Karadede, H., Ünlü E. 2000. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41 (9): 1371-1376.
  • [39] Tanyeli, A., Akdemir, F.N.E., Eraslan, E., Güler, M.C., Sebin, S.Ö., Gülçin, İ. 2020. Role of p-coumaric acid in alleviating of the intestinal ischemia/reperfusion injury. Kocaeli Medical Journal, 9 (1): 166-173.
  • [40] Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., Agarwal, A. 2009. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91: 805-811.
  • [41] Hamed, M., Soliman, H.A.M., Osman, A.G.M., Sayed, A.E.H. 2020. Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environmental Science and Pollution Research, 27: 14581-14588.
  • [42] Sayed, A.E.H., Abu Khalil, N.S. 2016. Oxidative Stress Induction in Monosex Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758): A Field Study on the Side Effects of Methyltestosterone. Journal of Aquaculture Research and Development, 7 (3): 416.
  • [43] Bagnyukova, T.V., Luzhna, L.I., Pogribny, I.P., Lushchak, V.I. 2007. Oxidative stress and antioxidant defenses in goldfish liver in response to shortterm exposure to arsenite. Environmental and Molecular Mutagenesis, 48: 658-665.
  • [44] Torreblanca, A., Del Ramo, J., Diaz-Mayans, J. 1989. Gill ATPase Activity in Procambarus clarkfi as an Indicator of Heavy Metal Pollution. Bulletin of Environmental Contamination and Toxicology, 42: 829-834.
  • [45] Marigoudar, S.R. 2012. Cypermethrin induced some pathophysiological and biochemical changes in the freshwater teleost, Labeo rohita (Hamilton). Ph.D Thesis, Karnatak University, Dharwad, India.
  • [46] Thaker, J., Chhaya, J., Nuzhat, S., Mittal, R. 1996. Effects of chromium (VI) on some iondependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes. Toxicology, 112: 237-244.
  • [47] Chhaya, J., Thaker, J., Mittal, R., Nuzhat, S., Mansuri, A.P., Kundu, R. 1997. Influence of Textile Dyeing and Printing Industry Effluent on ATPases in Liver, Brain, and Muscle of Mudskipper, Periophthalmus dipes. Bulletin of Environmental Contamination and Toxicology, 58: 793-800.
  • [48] Watson, T.A., Beamish, F.W.H. 1980. Effects of zinc on branchial ATPase activity in vivo in rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology Part C, 66: 77-82.
  • [49] Leitemperger, J., Menezes, C., Santi, A., Murussi, C., Lo ´pes, T., Costa, M., Nogueira, L.S., Loro, V.L. 2016. Early biochemical biomarkers for zinc in silver catfish (Rhamdia quelen) after acute exposure. Fish Physiology and Biochemistry, 42: 1005-1014.
  • [50] Morga, I.J., Henryb, R.P., Wood, C.M. 1997. The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na’ and Cl- transport. Aquatic Toxicology, 38: 145-163.
  • [51] Yoloğlu, E. 2019. Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and total atpase activities in gills of freshwater mussels exposed to penconazole. Commagene Journal of Biology, 3: 88-92.
  • [52] Uçkun, A.A., Öz, Ö.B., 2020a. Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823. Environmental Science and Pollution Research, 27: 35626-35637.
  • [53] Uçkun, A.A., Öz, Ö.B., 2020b. Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology, https://doi.org/10.1080/01480545.2020.1774604

Evaluation of Some Biomarkers in Carp (Cyprinus carpio Linnaeus, 1758) Depending on Water and Sediment Pollution of Atatürk Dam Lake

Yıl 2021, Cilt: 10 Sayı: 3, 744 - 753, 17.09.2021
https://doi.org/10.17798/bitlisfen.898021

Öz

In this study, some environmental pollution parameters of the Atatürk Dam Lake which is Turkey's largest artificial lake and meeting the irrigation and energy needs of Adıyaman and Şanlıurfa were evaluated with some biochemical data in the carp living in the lake and consumed economically by the public. Water, sediment and fish samplings were done simultaneously from Kahta and Bozova districts, where the Atatürk Dam Lake is located. Residue analyzes of various metals in water, sediment and muscle of carp samples were carried out together with some physicochemical parameters in the water. Total antioxidant capacity (TAC) and total oxidant scavenging capacity (TOSC) levels in liver, and activities of Na+/K+ATPase, Mg2+ATPase, Ca2+ATPase were determined in gill of the carp. As a result of the study, it was observed that Cd, Cr and Cu levels in water, Cd and Cu levels in sediment and Pb and Cd levels in carp exceeded the maximum acceptable concentrations. Among the biochemical parameters, oxidative stress index and TOSC level were found significantly higher in the liver of the fish in Kahta compared to those in Bozova. Na+/K+ATPase activity was significantly inhibited in the gill of the fish in Kahta. When all these pollution parameters and biochemical data are evaluated together, it can be said that the water, sediment and carp of Kahta are more contaminated with toxic metals than those in Bozova, and the carp are under oxidative stress, so they may be a threat to the health of the consumers hunted from this region.

Kaynakça

  • [1] Alhas, E., Oymak, S.A., Karadede-Akin, H. 2009. Heavy metal concentrations in two barb, Barbus xanthopterus and Barbus rajanorum mystaceus from Atatürk Dam Lake, Turkey. Environmental Monitoring and Assessment, 148: 11-18.
  • [2] Fırat, Ö. 2016. Evaluation of metal concentrations in fish species from Atatürk Dam Lake (Adiyaman, Turkey) in relation to human health. Fresenius Environmental Bulletin, 25: 3629-3634.
  • [3] Gürbüz, M., Çelik M.A., Gülersoy, A.E. 2013. An Examination of Effect of Atatürk Dam Lake on Agricultural Patterns in Bozova District (1984-2011). Gaziantep University Journal of Social Sciences, 12 (4): 853-866
  • [4] Ozmen, M., Gungordu, A., Kucukbay, F.Z., Guler, E.R. 2006. Monitoring the effects of water pollution on Cyprinus carpio in Karakaya Dam Lake, Turkey. Ecotoxicology, 15: 157–169. doi: 10.1007/s10646-005-0045-1.
  • [5] Mendoza-Carranza, M., Sepúlveda-Lozada, A., Dias-Ferreira, C., Geissen, V. 2016. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, 210: 155-165.
  • [6] Gauthier, L., Tardy, E., Mouchet, F. and Marty, J. 2004. Biomonitoring of the genotoxic potential (micronucleusassay) and detoxifying activity (EROD induction) in the River Dadou (France), using the amphibian Xenopus laevis. Science of the Total Environment, 323: 47-61.
  • [7] Tlili, S., Jebali, J., Banni, M., Haouas, Z., Mlayah, A., Helal, A.N., Boussetta, H. 2010. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environmental Monitoring and Assessment, 168: 285-298.
  • [8] Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., Winston, G.W. 2002a. Oxidative Stress in Ecotoxicology: from the Analysis of Individual Antioxidants to a More Integrated Approach. Marine Environmental Research, 54: 419-423.
  • [9] Regoli, F., Pellegrini, D., Winston, G.W., Gorbi, S., Giuliani, S., Virno-Lamberti, C., Bompadre, S. 2002b. Application of Biomarkers for Assessing the Biological Impact of Dredged Materials in the Mediterranean: the Relationship Between Antioxidant Responses and Susceptibility to Oxidative Stress in the Red Mullet (Mullus barbatus). Marine Pollution Bulletin, 44: 912-922.
  • [10] Pinchuk, I., Shoval, H., Dotan, Y., Lichtenberg, D. 2012. Evaluation of antioxidants: scope, limitations and relevance of assays. Chemistry and Physics of Lipids, 165: 638-47.
  • [11] Regoli, F. 2000. Total Oxyradical Scavenging Capacity (TOSC) in Polluted and Translocated Mussels: a Predictive Biomarker of Oxidative Stress. Aquatic Toxicology, 50: 351-361.
  • [12] Khangarot, B.S. 1992. Copper-induced hepatic ultrastructural alterations in the snake-headed fish, Channa punctatus. Ecotoxicology and Environmental Safety, 23: 282-293.
  • [13] Grosell, M., Wood, C.M., Walsh, P.J. 2003. Copper homeostasis and toxicity in the elasmobranch Raja erinacea and the teleost Myoxocephalus octodecemspinosus during exposure to elevated waterborne copper. Comparative Biochemistry and Physiology Part C, 135: 179-190.
  • [14] Loro, V.L., Nogueira, L., Nadella, S.R., Wood, C.M. 2014. Zinc bioaccumulation and ionoregulatory impacts in Fundulus heteroclitus exposed to sublethal waterborne zinc at differentsalinities. Comparative Biochemistry and Physiology Part C, 166: 96-104.
  • [15] Farkas, A., Salanki, J., Specziar, A. 2002. Relation between growth and the heavy metal concentration in organs of bream, Abramis brama L. Populating Lake Balaton. Archives of Environmental Contamination and Toxicology, 43: 236-243.
  • [16] Vinodhini, R., Narayanan, M. 2009. Biochemical changes of antioxidant enzymes in common carp (Cyprinus carpio L.) after heavy metal exposure. Turkish Journal of Veterinary and Animal Science, 33(4): 273-278.
  • [17] Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • [18] Atlı, G., Canlı, M. 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology, 20: 1861-1869.
  • [19] Atkinson, A., Gatemby, A.O., Lowe, A.G. 1973. The determination of inorganic ortophosphate in biological systems. Biochimica et Biophysica Acta, 320: 195-204.
  • [20] Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38: 1103-1111.
  • [21] Fırat, Ö., Alıcı, M.F. 2012. Assessment of Pollution in Ataturk Dam Lake (Adiyaman, Turkey) Using Several Biochemical Parameters in Common Carp, Cyprinus carpio L. Bulletin of Environmental Contamination and Toxicology, 89: 474-478.
  • [22] Karadağ, H., Fırat, Ö., Fırat, Ö., Use of Oxidative Stress Biomarkers in Cyprinus carpio L. for the Evaluation of Water Pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bulletin of Environmental Contamination and Toxicology, 92:289-293.
  • [23] Yoloğlu, E., Uçkun, M., Uçkun, A.A. 2018. Metal accumulation and biochemical variations in the freshwater mussels (Unio mancus) collected from Atatürk Dam Lake, Turkey. Biochemical Systematics and Ecology, 79: 60-68.
  • [24] SWQR, 2012. Surface Water Quality Regulation, Official Gazette No. 28483 dated November 30, 2012, Ankara.
  • [25] Ustaoğlu, F., Tepe, Y. 2018. Determination of Sediment Quality of Pazarsuyu Stream (Giresun, Turkey) by Multivariate Statistical Methods. Turkish Agriculture-Food Science and Technology Journal, 6 (3): 304-312.
  • [26] MacDonald, D.D., Ingersoll, C.G., Berger, T.A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, 39: 20-31.
  • [27] Krauskopf KB. 1979. Introduction to geochemistry. International series in the earth and planetary sciences. McGraw-Hill, Tokyo.
  • [28] Eqani, S., Kanwal, A., Ali, S.M., Sohail, M., Bhowmik, A.K., Ambreen, A., Ali, N., Fasola, M., Shen, H. 2016. Spatial distribution of dust-bound trace metals from Pakistan and its implications for human exposure. Environmental Pollution, 213: 213-222.
  • [29] ATSDR. 2012. Agency for Toxic Substance and Disease Registry. Toxicological profile for cadmium. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf
  • [30] FAO (Food and Agricultural Organization), 2003. Retrieved 2012. From Heavy Metal Regulations Faolex: http: //faolex.org/docs/pdf/eri 42405.pdf. WHO (World Health Organization). Evaluation of certain food additives and the contaminants mercury, lead and cadmium 2011 WHO Technical Report Series.
  • [31] Dural, M., Göksu, M., Özak, A. 2007. Investigation of heavy metal levels in economically important fish species captured from the Tuzla Lagoon. Food Chemistry, 102: 415-421.
  • [32] Waalkes, MP., Berthan, G. 1995. Handbook on Metal-Ligand Interactions of Biological Fluids. Vol. 2. New York, p. 471-482.
  • [33] Schmitt, C.J., Caldwell, C.A., Olsen, B., Serdar, D., Coffey, M. 2002. Inhibition of erythrocyte deltaaminolevulinic acid dehydratase activity in fish from waters affected by lead smelters. Environmental Monitoring and Assessment, 77: 99-119.
  • [34] Noureddine, D., Miloud, S., Abdelkader, A. 2005. Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology, 207 (3): 363-368.
  • [35] Patel, M., Rogers, J.T., Pane, E.F., Wood, C.M. 2006. Renal responses to acute lead waterborne exposure in the freshwater rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 80: 362-371.
  • [36] Saha, N., Zaman, M.R. 2013. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of rajshahi city, Bangladesh. Environmental Monitoring and Assessment, 185: 3867-3878.
  • [37] Oymak, S.A., Akin, H.K., Doğan, N. 2009. Heavy metal in tissues of Tor grypus from Atatürk Dam Lake, Euphrates River-Turkey. Biologia 64 (1): 151-155.
  • [38] Karadede, H., Ünlü E. 2000. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41 (9): 1371-1376.
  • [39] Tanyeli, A., Akdemir, F.N.E., Eraslan, E., Güler, M.C., Sebin, S.Ö., Gülçin, İ. 2020. Role of p-coumaric acid in alleviating of the intestinal ischemia/reperfusion injury. Kocaeli Medical Journal, 9 (1): 166-173.
  • [40] Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., Agarwal, A. 2009. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91: 805-811.
  • [41] Hamed, M., Soliman, H.A.M., Osman, A.G.M., Sayed, A.E.H. 2020. Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environmental Science and Pollution Research, 27: 14581-14588.
  • [42] Sayed, A.E.H., Abu Khalil, N.S. 2016. Oxidative Stress Induction in Monosex Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758): A Field Study on the Side Effects of Methyltestosterone. Journal of Aquaculture Research and Development, 7 (3): 416.
  • [43] Bagnyukova, T.V., Luzhna, L.I., Pogribny, I.P., Lushchak, V.I. 2007. Oxidative stress and antioxidant defenses in goldfish liver in response to shortterm exposure to arsenite. Environmental and Molecular Mutagenesis, 48: 658-665.
  • [44] Torreblanca, A., Del Ramo, J., Diaz-Mayans, J. 1989. Gill ATPase Activity in Procambarus clarkfi as an Indicator of Heavy Metal Pollution. Bulletin of Environmental Contamination and Toxicology, 42: 829-834.
  • [45] Marigoudar, S.R. 2012. Cypermethrin induced some pathophysiological and biochemical changes in the freshwater teleost, Labeo rohita (Hamilton). Ph.D Thesis, Karnatak University, Dharwad, India.
  • [46] Thaker, J., Chhaya, J., Nuzhat, S., Mittal, R. 1996. Effects of chromium (VI) on some iondependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes. Toxicology, 112: 237-244.
  • [47] Chhaya, J., Thaker, J., Mittal, R., Nuzhat, S., Mansuri, A.P., Kundu, R. 1997. Influence of Textile Dyeing and Printing Industry Effluent on ATPases in Liver, Brain, and Muscle of Mudskipper, Periophthalmus dipes. Bulletin of Environmental Contamination and Toxicology, 58: 793-800.
  • [48] Watson, T.A., Beamish, F.W.H. 1980. Effects of zinc on branchial ATPase activity in vivo in rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology Part C, 66: 77-82.
  • [49] Leitemperger, J., Menezes, C., Santi, A., Murussi, C., Lo ´pes, T., Costa, M., Nogueira, L.S., Loro, V.L. 2016. Early biochemical biomarkers for zinc in silver catfish (Rhamdia quelen) after acute exposure. Fish Physiology and Biochemistry, 42: 1005-1014.
  • [50] Morga, I.J., Henryb, R.P., Wood, C.M. 1997. The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na’ and Cl- transport. Aquatic Toxicology, 38: 145-163.
  • [51] Yoloğlu, E. 2019. Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and total atpase activities in gills of freshwater mussels exposed to penconazole. Commagene Journal of Biology, 3: 88-92.
  • [52] Uçkun, A.A., Öz, Ö.B., 2020a. Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823. Environmental Science and Pollution Research, 27: 35626-35637.
  • [53] Uçkun, A.A., Öz, Ö.B., 2020b. Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology, https://doi.org/10.1080/01480545.2020.1774604
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Aysel Alkan Uçkun 0000-0002-8957-7476

Miraç Uçkun 0000-0002-9018-8515

Yayımlanma Tarihi 17 Eylül 2021
Gönderilme Tarihi 16 Mart 2021
Kabul Tarihi 16 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 3

Kaynak Göster

IEEE A. Alkan Uçkun ve M. Uçkun, “Evaluation of Some Biomarkers in Carp (Cyprinus carpio Linnaeus, 1758) Depending on Water and Sediment Pollution of Atatürk Dam Lake”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 3, ss. 744–753, 2021, doi: 10.17798/bitlisfen.898021.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr