Tungsten Karbür Besleme Stoğundan Elde Edilen Parçalar İçin İdeal Çözücünün Araştırılması
Yıl 2021,
Cilt: 10 Sayı: 3, 1168 - 1174, 17.09.2021
Kamran Samet
,
Mehmet Subaşı
,
Çetin Karataş
Öz
Bu çalışmada tungsten karbür - kobalt (WC-Co) besleme stoğundan Toz Enjeksiyon Kalıplama (TEK) yöntemi ile elde edilmiş numunelerin kimyasal bağlayıcı aşamasında kullanılacak çözücü türü araştırılmıştır. TEK yöntemi ile WC-Co besleme stoğundan hazırlanan deney numunelerinin kimyasal bağlayıcı giderme deneyleri onüç farklı çözücü (Toluen, Benzen, Heptan, Aseton, Etanol, Karbon tetraklorür (CCl4), Etanol+ Karbon tetraklorür (CCl4), Metanol, Nitrik asit, Hidroklorik asit, Sülfürik asit, Kloroform, Dikloroetan) kullanılarak gerçekleştirilmiştir. Deneyler sonucunda WC-Co besleme stoğu için bulunabilirlik ve maliyet açısından en ideal çözücünün etanol olduğu belirlenmiştir. Ayrıca deneyler sonucunda 60 °C sıcaklık ve 60 saat sürede etanol içerisinde tutulan parçalarda hedeflenen sonuçların elde edildiği belirlenmiştir.
Destekleyen Kurum
TÜBİTAK ve Gazi Üniversitesi BAP birimi
Proje Numarası
TÜBİTAK Proje No : 115M437 ; Gazi Üniversitesi BAP birimi Proje No : 07 / 2016-21
Teşekkür
Bu çalışmanın ortaya çıkmasındaki desteklerinden dolayı TÜBİTAK (Proje No. 115M437) ve Gazi Üniversitesi'ne (Proje No. 07 / 2016-21) teşekkürlerimizi sunarız.
Kaynakça
- [1] German R.M. 1990. Powder injection molding. Cambridge Univ Press, 1-457.
- [2] Palacı Y. 1994. Kapileri emme mekanizması ile enjeksiyonda kalıplanmış parçadan bağlayıcının alınması,. Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 1-55.
- [3] Subaşı M., Safarian A., Karataş Ç. 2019. The investigation of production parameters of Ti-6Al-4V component by powder injection molding. The International Journal of Advanced Manufacturing Technology, 105:4747–4760.
- [4] Urtekin L, Genç A, Bozkurt F. 2019. Fabrication and simulation of feedstock for titaniumpowder injection-molding cortical-bone screws. Mater Tehnol, 53:619–25.
- [5] Baojun Z., Xuanhui Q. and Ying T. 2002. Powder injection molding of WC–8% Co tungsten cemented carbide. International Journal of Refractory Metals and Hard Materials, 20(5-6): 389-394.
- [6] Lee W.-J., Lee S.-E. and Kim C.-G. 2006. The mechanical properties of MWNT/PMMA
nanocomposites fabricated by modified injection molding. Composite Structures, 76(4): 406-410.
- [7] Heng S. Y., Norhamidi M., Sulong A. B., Abdolali F., Sri Y., Amin M. 2013. Effect of sintering temperature on the mechanicaland physical properties of WC–10%Co through micro-powderinjection molding (mPIM), Ceramics International. 39 : 4457–4464.
- [8] Li T., Qingfa L., Fuh J.Y.H., Poh C. Y., Lu L. 2009. Two-material powder injection molding of functionally graded WC–Co components, Int. Journal of Refractory Metals & Hard Materials. 27 : 95–100.
- [9] Nishimura K. and Yoshino K., 1995. Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system, Google Patents, 1-10.
- [10] Mutsuddy B.C. and Ford R.G. 1994. Ceramic injection molding. Vol. 1. Springer Science& Business Media, 1-152.
- [11] Diaz-Cano A., Trice R.W. and Youngblood J.P. 2017. Stabilization of highly-loaded boron carbide aqueous suspensions, Ceramics International, 43(12): 8572- 8578.
- [12] Okumura K.-i., Chono K., Ozeki H. and Hamada T. 1991. Reaction injection molding method. Google Patents, 1-10.
- [13] Chen A.T., Farrissey W.J.J. and Robert G.N.I. 1978. Polyester amides suitable for injection molding. Google Patents, 1-10.
- [14] Fukushima M. and Iwanami T. 1975. Molding material. Google Patents, 1-10.
- [15] Imai T., Hashimoto M. and Harima S. 2001. Polypropylene resin composition and injection-molded article thereof. Google Patents, 1-10.
- [16] Qu X., Gao J., Qin M. and Lei C. 2005. Application of a wax-based binder in PIM of WC–TiC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 23(4-6): 273-277.
- [17] Enneti R.K., Prough K.C., Wolfe T.A., Klein A., Studley N. and Trasorras J.L. 2018. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals and Hard Materials, 71: 28-35.