Araştırma Makalesi
BibTex RIS Kaynak Göster

Aktif Tektonizma Etkisi Altındaki Çaldıran (Van) Yerleşim Alanının Yüzey Dalgası Yöntemleriyle İncelenmesi

Yıl 2021, Cilt: 10 Sayı: 4, 1435 - 1447, 31.12.2021
https://doi.org/10.17798/bitlisfen.959503

Öz

Çaldıran (Van) yerleşim alanı ve çevresi deprem üretme potansiyeli son derece fazla olan aktif bir bölgede yeralmaktadır. Sağ yönlü doğrultu atım karakterli Çaldıran fay zonu bölgenin en önemli tektonik unsurlarındandır. Depreme bağlı yapısal hasarların, yerel zemin özelliklerinin ve yapı-zemin ilişkilerinin incelenmesinde kayma dalga hızı (Vs) temel parametrelerden birisidir. Bu çalışmada, aktif ve pasif kaynaklı yüzey dalgası yöntemleri uygulanarak elde edilen Vs hızlarından Van ili Çaldıran ilçesi yerleşim alanı ve çevresinin zemin özellikleri araştırılmıştır. Çalışma alanının mühendislik özelliklerinin ortaya konması ve deprem-zemin-yapı ilişkilerinin incelenmesi için bölgenin büyütme, periyot (t0), ilk 30 m’deki ortalama Vs hızını temsil eden Vs30, zemin sınıfı ve sismik zayıflık indisi (Kg) haritaları hazırlanmıştır. Elde edilen veriler kullanılarak, farklı doğrultularda derinlik kesitleri oluşturulmuştur.

Kaynakça

  • [1] Akkaya İ., Özvan A., Tapan M., Şengül M.A. 2015. Determining the site effects of 23 October 2011 earthquake (Van province, Turkey) on the rural areas using HVSR microtremor method. Journal of Earth System Science, 124(7), 1429-1443.
  • [2] Akkaya İ., Özvan A., Akın M., Akın M.K., Övün U. 2018. Comparison of SPT and Vs-Based Liquefaction Analyses: A Case Study in Erciş (Van,Turkey), Acta Geophysica, 66, 21-38. https://doi.org/10.1007/s11600-017-0103-0.
  • [3] Akkaya İ., Özvan A. 2019. Site Characterization in the Van Settlement (Eastern Turkey) Using Surface Waves and HVSR Microtremor Methods, Journal of Applied Geophysics, 160, 157-170.
  • [4] Akkaya İ. 2020a. Availability of seismic vulnerability index (Kg) in the assessment of building damage in Van, Eastern Turkey. Eearthquake Engineering and Engineering Vibration ,19(1), 189-204.
  • [5] Akkaya İ. 2020b. Jeofizik Verilerinden Elde Edilen Sismik Zayıflık İndisinin Yapısal Hasar Değerlendirmesinde Kullanılabilirliği, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(4), 1711-1723.
  • [6] Alkan A. 2021. Çaldıran (Van) yerleşim alanı zemin özelliklerinin yüzey dalgası yöntemleri ile incelenmesi, Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans tezi,111 s.
  • [7] Nakamura Y. 1989. A Method for Dynamic Characteristics Estimation of Sub-surface Using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institute, 30, 25-33.
  • [8] Nakamura Y. 2000. Clear identification of the fundamental idea of Nakamura’s technique and its applications. In: 12th World conference on earthquake engineering, New Zealand (CD-ROM) Paper No. 2656
  • [9] Lermo J., Chavez-Garcia F.J. 1994. Are Microtremors Useful in Site Response Evaluation?, Bulletin of the Seismological Society of America, 84, 1350-1364.
  • [10] Park C.B., Miller R.D., Xia J. 1999. Multichannel analysis of Surface Waves, Geophysics, 64, 800-808.
  • [11] Bard P. 1999. Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion, 3, 1251-1279.
  • [12] Xia, J., Miller, R.D., Park, C.B., 2000. Advantages of calculating shear-wave velocity from surface waves with higher modes, The Society of Exploration Geophysicists, Expanded Abstracts, 1295-1298.
  • [13] Louie J.N. 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347-364.
  • [14] Okada H. 2003. The Microtremor Survey Method, Geophysical Monograph, No. 12, Society of Exploration Geophysicists, Tulsa.
  • [15] SESAME. 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation SESAME European Research Project P12-Deliverable. D23.12 ftp://ftp.geo.uib.no/pub/ seismo/Software/Sesame/Userguidelines/Sesame-HV-UserGuide lines.doc
  • [16] Pamuk E., Akgün M., Özdağ Ö.C., Gönenç T. 2017. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey. Journal of Applied Geophysics, 137, 104-117.
  • [17] Ólafsdóttir E.Á., Erlingsson S., Bessason B. 2018. Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217–233.
  • [18] Şaroğlu F., Yılmaz Y. 1986. Doğu Anadolu’da Neotektonik Dönemdeki Jeolojik Evrim ve Havza Modelleri, MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • [19] Erkanol D., Avşar M., Aslan Ö., Burçak M., Kurtman T., Şener S., Çakır Y., Kocaman H. 1991. Çaldıran-Muradiye (Van)-Doğubayazıt (Ağrı) İran sınırı Arasında Kalan Alanın Genel Jeolojisi. MTA Rap. No: 9733, Ankara.
  • [20] Koçyiğit A., Yilmaz A., Adamia S., Kulashvili S. 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting, Geodinamica Acta, 14, 177-195.
  • [21] Koçyiğit A. 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, Turkey, Journal of Asian Eart Sciences, 62, 586-605.
  • [22] Selçuk A.S., Erturaç M.K., Nomade S. 2016. Geology of the Çaldıran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behaviour, Tectonophysics, 680, 155-173.
  • [23] Şengül M.A., Gürboğa Ş., Akkaya İ., Özvan A. 2019. Deformation Patterns in the Van Region (Eastern TURKEY) and Their Significance for the Tectonic Framework, Geologica Carpathica, 70 (3), 193-208.
  • [24] Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F. 2013. 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi, Ankara, Türkiye.
  • [25] KOERI. 2021. Bogazici University Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center (KOERI) website. Available: http://www.koeri.boun.edu.tr/sismo/2/en/
  • [26] Arpat E., Şaroğlu F., İz H.B. 1977. Çaldıran Depremi, Yeryuvarı ve İnsan, 2, 29-41.
  • [27] GEOPSY. 1997. Geophysical signal database for noise array processing. www.geopsy.org. Erişim tarihi: Şubat 2021.
  • [28] Bard P. 1998. Microtremor measurements: A tool for site effect estimation? Second International Symposium on the Effects of Surface Geology on Seismic Motion, eds. K. Irikura, K. Kudo, H. Okada and T. Sasatani (Balkema, Rotterdam), Vol III, Yokohama, Japan, pp. 1251‒1279, ISBN:9058090302.
  • [29] Asten W.M. 2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods, Geophysics, 71(6), V153-V162.
  • [30] Nakamura Y. 1997. Seismic vulnerability ındices for ground and structures using microtremor, World Congress on Railway Research, Florence.
  • [31] Xia J., Miller R.D., Park C.B., Hunter J.A., Harris J.B., Ivanov J. 2002. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn Earthq Eng 22, 181-190
  • [32] Miller R.D., Xia J., Park C.B., Ivanov J. 1999. Using MASW to map bedrock in Olathe, Kansas. Exp Abstrs Soc Explor Geophys 433-436. doi:10.1190/1.1821045
  • [33] Foti S. 2000. Multistation Methods for Geotechnical Characterization using Surface Waves, Ph.D. Diss., Politecnico di Torino, 230 p., Milano.
  • [34] Park C.B., Miller R.D. 2005. Seismic Characterization of Wind Turbine Sites in Kansas by the MASW Method, Kansas Geological Survey Open-fi le Report, 2005-23.
  • [35] Dikmen Ü., Arısoy M.Ö., Akkaya İ. 2010a. Offset and linear spread geometry in the MASW method. Journal of Geophysics and Engineering,7, 211-222.
  • [36] Dikmen Ü., Başokur A.T., Akkaya İ., Arısoy M.Ö. 2010b. Yüzey dalgalarının çok-kanallı analizi yönteminde uygun atış mesafesinin seçimi, Yerbilimleri, 31(1), 23-32.
  • [37] Tün M., Pekkan E., Özel O., Güney Y. 2016. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method, Geophys. J. Int. 207, 589-607.
  • [38] Silahtar A., Budakoğlu E., Horasan G., Yıldırım E., Küyük H.S., Yavuz E., Çaka D. 2016. Investigation of site properties in Adapazarı, Turkey, using microtremors and surface waves, Environ Earth Sci, 75, 1354. DOI 10.1007/s12665-016-6151-y
  • [39] SeisImager/SW, 2005. Manual V 1.4 WindowsTM software for analysis of surface waves (Pickwin v. 3.14; WaveEq v. 2.07), including explanation of Geometrics Seismodule Controller Software Surface Wave Data Acquisition Wizards. ftp://geom. geometrics.com/pub/seismic/SeisImager
  • [40] TBDY, 2019. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Resmi Gazete, Tarih: 18 Mart 2018, Sayı: 30364.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ayhan Alkan Bu kişi benim 0000-0001-9460-6828

İsmail Akkaya 0000-0002-7682-962X

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 30 Haziran 2021
Kabul Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 4

Kaynak Göster

IEEE A. Alkan ve İ. Akkaya, “Aktif Tektonizma Etkisi Altındaki Çaldıran (Van) Yerleşim Alanının Yüzey Dalgası Yöntemleriyle İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 4, ss. 1435–1447, 2021, doi: 10.17798/bitlisfen.959503.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr