Natural language processing Bag of Words Word2Vec sentiment analysis
Twitter sentiment classification is an artificial approach for examining textual information and figuring out what people's publicly tweets from a variety of industries are experiencing or thinking. For instance, a large number of tweets containing hashtags are posted online every minute from one user to some other user in the commercial and politics fields. It can be challenging for scientists to correctly comprehend the context in which specific tweet terms are used, necessitating a challenge in determining what is actually a positive or negative comment from the vast database of twitter data. The system's authenticity is violated by this issue and user dependability may be significantly diminished. In this study, twitter data sent to interpret movies were classified using various classifier and feature methods. In this context, the IMDB database consisting of 50000 movie reviews was used. For the purpose of anticipating the sentimental tweets for categorization, a huge proportion of twitter data is analyzed. In the proposed method, bag of words and word2vec methods are given by combining them instead of giving them separately to the classifier. With both the suggested technique, the system's effectiveness is increased and the data that are empirically obtained from the real world situation may be distinguished well. With experimental efficiency of 90%, the suggested approach algorithms' output attempts to assess the reviews tweets as well as be able to recognize movie reviews.
Natural language processing Bag of Words sentiment analysis Word2Vec
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 27 Haziran 2023 |
Yayımlanma Tarihi | 27 Haziran 2023 |
Gönderilme Tarihi | 5 Ocak 2023 |
Kabul Tarihi | 9 Mayıs 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 12 Sayı: 2 |