Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization Of Hybrid Composite Laminates With Various Materials Using GA/GPSA Hybrid Algorithm for Maximum Dimensional Stability

Yıl 2024, Cilt: 13 Sayı: 1, 107 - 133, 24.03.2024
https://doi.org/10.17798/bitlisfen.1354586

Öz

In this study, it is aimed to obtain the highest dimensional stability against temperature changes in fiber-reinforced hybrid composite laminates considering eight different composite materials: Aramid/Epoxy, AS4/Epoxy, Boron/Epoxy, E-Glass/Epoxy, IM6/Epoxy, GY70/Epoxy, Kevlar49/Epoxy, and Spectra/Epoxy. The study focuses on finding the optimum continuous and traditional fiber angle orientations for the hybrid composite plates that would provide the lowest coefficients of thermal expansion. For this purpose, two different laminate sequences were investigated, each including two materials. A hybrid algorithm combining genetic algorithm and generalized pattern search algorithm was used in the optimization. A great number of hybrid design problems were solved repeatedly, and their results were compared both within themselves and to the optimum non-hybrid laminate results. Furthermore, the thermal durability of the selected optimum hybrid designs was evaluated by Tsai-Wu failure and Hashin-Rotem criteria. The results reveal that substantial increase in dimensional stability can be achieved by stacking sequence optimization of hybrid composite laminates with multiple material selection, and this hybrid design approach can offer the desired laminated composite structures for aerospace applications required to withstand extreme temperature changes.

Kaynakça

  • [1] S. G. Lim and C. S. Hong, “Effect of transverse cracks on the thermomechanical properties of cross-ply laminated composites,” Compos. Sci. Technol., vol. 34, no. 2, pp. 145–162, 1989.
  • [2] K. J. Yoon and J. Kim, “Prediction of Thermal Expansion Properties of Carbon/Epoxy Laminates for Temperature Variation,” J. Compos. Mater., vol. 34, no. 2, pp. 90–100, Jan. 2000.
  • [3] R. Y. Kim and A. S. Crasto, “Dimensional stability of composites in space: CTE variations and their prediction,” in ICCM-10, 1995, pp. 513–520.
  • [4] R. L. Riche and R. Gaudin, “Design of dimensionally stable composites by evolutionary optimization,” Compos. Struct., vol. 41, no. 2, pp. 97–111, Feb. 1998.
  • [5] M. Khalil, E. Bakhiet, and A. El-Zoghby, “Optimum design of laminated composites subjected to hygrothermal residual stresses,” Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., vol. 215, no. 3, pp. 175–186, July 2001.
  • [6] R. P. Zhu and C. T. Sun, “Effects of fiber orientation and elastic constants on coefficients of thermal expansion in laminates,” Mech. Adv. Mater. Struct., vol. 10, no. 2, pp. 99–107, 2003.
  • [7] C. G. Diaconu and H. Sekine, “Flexural characteristics and layup optimization of laminated composite plates under hygrothermal conditions using lamination parameters,” J. Therm. Stresses, vol. 26, no. 9, pp. 905–922, 2003.
  • [8] L. Aydin and H. S. Artem, “Single and multi-objective genetic algorithm optimizations of the laminated composites used in satellite structures,” in Proceedings of the International Symposium of Mechanism and Machine Science, Izmir, Turkey, 2010, pp. 219–226.
  • [9] Z. Zhang, W. Zhong, and H. Song, “Design of hybrid composites with zero coefficient of thermal expansion,” J. Mater. Sci. Technol., vol. 12, no. 4, pp. 241–248, July 1996.
  • [10] F. Bressan, F. De Bona, and A. Somà, “Design of composite laminates with low thermal expansion,” Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., vol. 218, no. 3, pp. 201–209, July 2004.
  • [11] S. Adali and K. Duffy, “Minimum cost design of vibrating laminates by hybridization,” Eng. Optim., vol. 19, no. 4, pp. 255–267, 1992.
  • [12] S. Adali and V. E. Verijenko, “Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations,” Compos. Struct., vol. 54, no. 2–3, pp. 131–138, Nov.-Dec. 2001.
  • [13] M. Abachizadeh and M. Tahani, “An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost,” Struct. Multidiscipl. Optim., vol. 37, no. 4, pp. 367–376, Jan. 2009.
  • [14] M. Savran and L. Aydin, “Stochastic optimization of graphite-flax/epoxy hybrid laminated composite for maximum fundamental frequency and minimum cost,” Eng. Struct., vol. 174, pp. 675–687, Nov. 2018.
  • [15] A. K. Kaw, Mechanics of composite materials. Taylor and Francis, London, 2006.
  • [16] H. A. Deveci, L. Aydin, and H. Seçil Artem, “Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint,” J. Reinf. Plast. Compos., vol. 35, no. 16, pp. 1233–1247, Aug. 2016.
  • [17] S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., vol. 5, no. 1, pp. 58–80, Jan. 1971.
  • [18] Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., vol. 7, no. 4, pp. 448–464, Oct. 1973.
  • [19] MATLAB Optimization Toolbox. Computer software. Version R2019b. The Mathworks, Inc. 2019.
  • [20] T. Weise, “Global Optimization Algorithms Theory and Application,” Journal of Computer and Communications, 2008.
  • [21] X. S. Yang, Engineering optimization: an introduction with metaheuristic applications. NJ: John Wiley, 2010.
  • [22] S. S. Rao, Engineering optimization theory and practice. NJ: John Wiley, 2009.
  • [23] V. Torczon, “On the convergence of pattern search algorithms,” SIAM J. Optim., vol. 7, no. 1, pp. 1–25, 1997.
  • [24] H. A. Deveci and H. S. Artem, “Optimum design of fatigue-resistant composite laminates using hybrid algorithm,” Compos. Struct., vol. 168, pp. 178–188, May 2017.
  • [25] J. R. Vinson, R. L. Sierakowski, and C. W. Bert, “The behavior of structures composed of composite materials,” J. Appl. Mech., vol. 54, no. 1, pp. 249–249, 1987.
  • [26] F. Donald, A. Leif, A. Carlsson, and R. Byron, Experimental Characterization of Advanced Composite Materials. New York, 2002.
  • [27] R. R. Johnson, M. H. Kural, and G. B. Mackey, Thermal Expansion Properties of Composite Materials, California, 1981.
  • [28] NASA, “Thermal loadings that materials in space can withstand,” 2022. [Online]. Available: https://www.nasa.gov/. [Accessed: Dec.28, 2021].
Yıl 2024, Cilt: 13 Sayı: 1, 107 - 133, 24.03.2024
https://doi.org/10.17798/bitlisfen.1354586

Öz

Kaynakça

  • [1] S. G. Lim and C. S. Hong, “Effect of transverse cracks on the thermomechanical properties of cross-ply laminated composites,” Compos. Sci. Technol., vol. 34, no. 2, pp. 145–162, 1989.
  • [2] K. J. Yoon and J. Kim, “Prediction of Thermal Expansion Properties of Carbon/Epoxy Laminates for Temperature Variation,” J. Compos. Mater., vol. 34, no. 2, pp. 90–100, Jan. 2000.
  • [3] R. Y. Kim and A. S. Crasto, “Dimensional stability of composites in space: CTE variations and their prediction,” in ICCM-10, 1995, pp. 513–520.
  • [4] R. L. Riche and R. Gaudin, “Design of dimensionally stable composites by evolutionary optimization,” Compos. Struct., vol. 41, no. 2, pp. 97–111, Feb. 1998.
  • [5] M. Khalil, E. Bakhiet, and A. El-Zoghby, “Optimum design of laminated composites subjected to hygrothermal residual stresses,” Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., vol. 215, no. 3, pp. 175–186, July 2001.
  • [6] R. P. Zhu and C. T. Sun, “Effects of fiber orientation and elastic constants on coefficients of thermal expansion in laminates,” Mech. Adv. Mater. Struct., vol. 10, no. 2, pp. 99–107, 2003.
  • [7] C. G. Diaconu and H. Sekine, “Flexural characteristics and layup optimization of laminated composite plates under hygrothermal conditions using lamination parameters,” J. Therm. Stresses, vol. 26, no. 9, pp. 905–922, 2003.
  • [8] L. Aydin and H. S. Artem, “Single and multi-objective genetic algorithm optimizations of the laminated composites used in satellite structures,” in Proceedings of the International Symposium of Mechanism and Machine Science, Izmir, Turkey, 2010, pp. 219–226.
  • [9] Z. Zhang, W. Zhong, and H. Song, “Design of hybrid composites with zero coefficient of thermal expansion,” J. Mater. Sci. Technol., vol. 12, no. 4, pp. 241–248, July 1996.
  • [10] F. Bressan, F. De Bona, and A. Somà, “Design of composite laminates with low thermal expansion,” Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., vol. 218, no. 3, pp. 201–209, July 2004.
  • [11] S. Adali and K. Duffy, “Minimum cost design of vibrating laminates by hybridization,” Eng. Optim., vol. 19, no. 4, pp. 255–267, 1992.
  • [12] S. Adali and V. E. Verijenko, “Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations,” Compos. Struct., vol. 54, no. 2–3, pp. 131–138, Nov.-Dec. 2001.
  • [13] M. Abachizadeh and M. Tahani, “An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost,” Struct. Multidiscipl. Optim., vol. 37, no. 4, pp. 367–376, Jan. 2009.
  • [14] M. Savran and L. Aydin, “Stochastic optimization of graphite-flax/epoxy hybrid laminated composite for maximum fundamental frequency and minimum cost,” Eng. Struct., vol. 174, pp. 675–687, Nov. 2018.
  • [15] A. K. Kaw, Mechanics of composite materials. Taylor and Francis, London, 2006.
  • [16] H. A. Deveci, L. Aydin, and H. Seçil Artem, “Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint,” J. Reinf. Plast. Compos., vol. 35, no. 16, pp. 1233–1247, Aug. 2016.
  • [17] S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., vol. 5, no. 1, pp. 58–80, Jan. 1971.
  • [18] Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., vol. 7, no. 4, pp. 448–464, Oct. 1973.
  • [19] MATLAB Optimization Toolbox. Computer software. Version R2019b. The Mathworks, Inc. 2019.
  • [20] T. Weise, “Global Optimization Algorithms Theory and Application,” Journal of Computer and Communications, 2008.
  • [21] X. S. Yang, Engineering optimization: an introduction with metaheuristic applications. NJ: John Wiley, 2010.
  • [22] S. S. Rao, Engineering optimization theory and practice. NJ: John Wiley, 2009.
  • [23] V. Torczon, “On the convergence of pattern search algorithms,” SIAM J. Optim., vol. 7, no. 1, pp. 1–25, 1997.
  • [24] H. A. Deveci and H. S. Artem, “Optimum design of fatigue-resistant composite laminates using hybrid algorithm,” Compos. Struct., vol. 168, pp. 178–188, May 2017.
  • [25] J. R. Vinson, R. L. Sierakowski, and C. W. Bert, “The behavior of structures composed of composite materials,” J. Appl. Mech., vol. 54, no. 1, pp. 249–249, 1987.
  • [26] F. Donald, A. Leif, A. Carlsson, and R. Byron, Experimental Characterization of Advanced Composite Materials. New York, 2002.
  • [27] R. R. Johnson, M. H. Kural, and G. B. Mackey, Thermal Expansion Properties of Composite Materials, California, 1981.
  • [28] NASA, “Thermal loadings that materials in space can withstand,” 2022. [Online]. Available: https://www.nasa.gov/. [Accessed: Dec.28, 2021].
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik, Makine Mühendisliğinde Optimizasyon Teknikleri, Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Hacer Geçmez Bu kişi benim 0000-0003-3255-1504

Hamza Arda Deveci 0000-0001-9926-8768

Erken Görünüm Tarihi 21 Mart 2024
Yayımlanma Tarihi 24 Mart 2024
Gönderilme Tarihi 3 Eylül 2023
Kabul Tarihi 2 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 1

Kaynak Göster

IEEE H. Geçmez ve H. A. Deveci, “Optimization Of Hybrid Composite Laminates With Various Materials Using GA/GPSA Hybrid Algorithm for Maximum Dimensional Stability”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 13, sy. 1, ss. 107–133, 2024, doi: 10.17798/bitlisfen.1354586.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr