Research Article
BibTex RIS Cite

Design, Fabrication, and Piezoelectric Performance Evaluation of a Nanogenerator for Vibrational Energy Harvesters

Year 2024, Volume: 13 Issue: 4, 896 - 904, 31.12.2024
https://doi.org/10.17798/bitlisfen.1458956

Abstract

In recent years, to provide power for wearable electronics, the mechanical energy obtained from environmental conditions through the piezoelectric nanogenerator into electricity has attracted interest. In this study, polyvinylidene fluoride (PVDF), lead zirconium titanate (PZT), and graphene nanoplatelets (GNP) based piezoelectric nanogenerators (PENs) were fabricated using electrospinning method. The experimental results evaluated using Thevenin’s, Norton’s, and the maximum power transfer theorems exhibited that the PVDF/PZT/GNP-based PEN had a 2.76 times greater electrical power efficiency (0.24 µW) at the resonance frequency of 20 Hz compared to that of the PEN based on the pure PVDF (0.09 µW) at the vibrational frequency of 25 Hz. The piezoelectric energy harvesters are highly suitable as self-powered wearable motion sensors because of the direct relationship between the vibration frequency and the generated output power.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] R. Fazio, D. Cafagna, G. Marcuccio and P. Visconti, "Limitations and characterization of energy storage devices for harvesting applications", Energies, vol.13-4, 783, February 2020.
  • [2] A.Z.A. Shaqsi, K. Sopian and A. Al-Hinai, "Review of energy storage services, applications, limitations, and benefits", Energy Rep. vol. 6, pp. 288–306, 2020.
  • [3] A. Olabi, M.A. Abdelkareem, T. Wilberforce and E.T. Sayed, "Application of graphene in energy storage device–A review", Renewable Sustainable Energy Reviews, vol.135, 2021, 110026.
  • [4] R.A. Surmenev, R.V. Chernozem, I.O. Pariy and M.A. Surmeneva, "A review on piezo and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications", Nano Energy, vol. 79, 2021, 105442.
  • [5] S.A. Graham, S.C. Chandrarathna, H. Panama, P. Manchi, J.-W. Lee and J.S. Yu, "Harsh environment–tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home", Nano Energy, vol.80, 2021, 105547.
  • [6] U. Yaqoob, S. M. I. Uddin and G.-S. Chung, "A Novel Tri-Layer Flexible Piezoelectric Nanogenerator Based on Surface- Modified Graphene and PVDF-BaTiO3 Nanocomposites", Applied Surface Science, vol. 405, pp. 420-426, 2017.
  • [7] Y. Wu, et al., "A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring", Nano Energy, vol. 92, 2022, 106715.
  • [8] N. Piovesan, A.F. Gambin, M. Miozzo, M. Rossi and P. Dini, "Energy sustainable paradigms and methods for future mobile networks: a survey", Computer Communications, vol. 119, pp. 101–117, 2018.
  • [9] H. Li, K. Ota and M. Dong, "Energy cooperation in battery-free wireless communications with radio frequency energy harvesting", ACM Transactions Embedded Computing Systems, vol. 17, pp. 1-17, 2018.
  • [10] A. Ali, S. Iqbal and X. Chen, "Recent advances in piezoelectric wearable energy harvesting based on human motion: Materials, design, and applications", Energy Strategy Reviews, vol. 53, pp. 1-16, 2024.
  • [11] S. Bairagi, S. Islam, M. Shahadat, D.M. Mulvihill and W. Ali, "Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review", Nano Energy, vol. 111, pp. 1-29, 2023.
  • [12] Z. Li, J. Roscow, H. Khanbareh, G. Haswell and C. Bowen, "Energy Harvesting from Water Flow by using Piezoelectric materials ", Advanced Energy & Sustainability Research, vol. 5, pp. 1-33, 2024.
  • [13] A. Salimi and A.A. Yousefi, "Analysis Method: FTIR studies of beta-phase crystal formation stretched PVDF films ", Polymer Testing, vol. 22, pp. 699-704, 2003.
  • [14] H. Pan, B. Na, R. Lv, C. Li, J. Zhu and Z. Yu, "Polar phase formation in poly (vinylidene fluoride) induced by melt annealing", Journal of Polymer Science, Part B: Polymer Physics, vol.50, pp. 1433–1437, 2012.
  • [15] S.F. Mendes, C.M. Costa, C. Caparros, V. Sencadas and S. Lanceros-Mendez, "Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO3 nanocomposites", Journal of Materials Science, vol. 47, pp. 1378–1388, 2012.
  • [16] Y. Wang, D. Lei, L. Wu, R. Ma, H. Ning, N. Hu and A. Lee, "Effects of stretching on phase transformation of PVDF and its copolymers: A review", Open Physics, vol. 21, 2023, 2022-0255.
  • [17] R.S. Sabry and A.D. Hussein, "PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator", Polymer Testing, vol. 79, 2019, 106001.
  • [18] H.G. Yeo, X. Ma, C. Rahn and S. Trolier-McKinstry, "Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils", Advanced Functional Materials vol.26, pp. 5940–5946, 2016.
  • [19] X. Chen, S. Xu, N. Yao and Y. Shi, "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers", Nano Letter, vol. 10, pp. 2133–2137, 2010.
  • [20] M. Sobocinski, M. Leinonen, J. Juuti, N. Mantyniemi and H. Jantunen, "A co-fired LTCC–PZT monomorph bridge type acceleration sensor", Sensors and Actuator A: Physical, vol. 216, pp. 370–375, 2014.
  • [21] X. Lin, F. Yu, X. Zhang, W. Li, Y. Zhao, X. Fei, Q. Li, C. Yang, and S. Huang, "Wearable Piezoelectric Films Based on MWCNT-BaTiO3/PVDF Composites for Energy Harvesting, Sensing, and Localization", ACS Applied Nano Materials, vol. 6, pp. 11955−11965, 2023.
  • [22] R. Sridar, V. Amith, S. Aditva, A. Gangadhar and K.A. Vishnumurthy, "Electrospun PVDF/Cloisite-30B and PVDF/BaTiO3/graphene nanofiber mats for development of nanogenerator", Journal of the Indian Chemical Society, vol. 99, 2022, 100501.
  • [23] S. K. Ghosh, A. Biswas, S. Sen, C. Das, K. Henkel, D. Schmeisser and D. Mandal, "Yb3+ assisted self-polarized PVDF based ferroelectric nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication", Nano Energy, vol. 30, pp. 621-629, 2016.
  • [24] L. H. Meng, C. Yang, J. Meng, Y. Wang, Y. Ge, Z. Shao, G. Zhang, A. L. Rogach and H. Zhong, "In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinyl alcohol nanofibers: Shape tuning and polarized emission", Nano Research, vol. 12, pp. 1411-1416, 2019.
  • [25] L. Paralı, F. Tatardar, M. Koç, A. Sarı and R. Moradi, "The piezoelectric response of electrospun PVDF/PZT incorporated with pristine graphene nanoplatelets for mechanical energy harvesting", Journal of Materials Science: Materials in Electronics, vol. 35, 41, 2024.
  • [26] John Hiley, Keith Brown and Ian McKenzie Smith, "Electrical and Electronic Technology", 10th edition, Pearson Education Limited, 2008.
  • [27] Alexander, Charles K., and Sadiku, Matthew N. O., "Fundamentals of Electric Circuits", 5th Ed, McGraw Hill, Indian Edition, 2013.
  • [28] Md. Abdus Salam and Quazi Mehbubar Rahman, "Fundamentals of Electrical Circuit Analysis", ISBN 978-981-10-8624-3 (eBook), Springer Nature Singapore Pte Ltd. 2018.
  • [29] David Halliday, Robert Resnick and Jearl Walker, "Fundamentals of Physics", 7th Ed, ISBN 978-0-471-71716-4, John Wiley & Sons Limited, 2005.
Year 2024, Volume: 13 Issue: 4, 896 - 904, 31.12.2024
https://doi.org/10.17798/bitlisfen.1458956

Abstract

References

  • [1] R. Fazio, D. Cafagna, G. Marcuccio and P. Visconti, "Limitations and characterization of energy storage devices for harvesting applications", Energies, vol.13-4, 783, February 2020.
  • [2] A.Z.A. Shaqsi, K. Sopian and A. Al-Hinai, "Review of energy storage services, applications, limitations, and benefits", Energy Rep. vol. 6, pp. 288–306, 2020.
  • [3] A. Olabi, M.A. Abdelkareem, T. Wilberforce and E.T. Sayed, "Application of graphene in energy storage device–A review", Renewable Sustainable Energy Reviews, vol.135, 2021, 110026.
  • [4] R.A. Surmenev, R.V. Chernozem, I.O. Pariy and M.A. Surmeneva, "A review on piezo and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications", Nano Energy, vol. 79, 2021, 105442.
  • [5] S.A. Graham, S.C. Chandrarathna, H. Panama, P. Manchi, J.-W. Lee and J.S. Yu, "Harsh environment–tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home", Nano Energy, vol.80, 2021, 105547.
  • [6] U. Yaqoob, S. M. I. Uddin and G.-S. Chung, "A Novel Tri-Layer Flexible Piezoelectric Nanogenerator Based on Surface- Modified Graphene and PVDF-BaTiO3 Nanocomposites", Applied Surface Science, vol. 405, pp. 420-426, 2017.
  • [7] Y. Wu, et al., "A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring", Nano Energy, vol. 92, 2022, 106715.
  • [8] N. Piovesan, A.F. Gambin, M. Miozzo, M. Rossi and P. Dini, "Energy sustainable paradigms and methods for future mobile networks: a survey", Computer Communications, vol. 119, pp. 101–117, 2018.
  • [9] H. Li, K. Ota and M. Dong, "Energy cooperation in battery-free wireless communications with radio frequency energy harvesting", ACM Transactions Embedded Computing Systems, vol. 17, pp. 1-17, 2018.
  • [10] A. Ali, S. Iqbal and X. Chen, "Recent advances in piezoelectric wearable energy harvesting based on human motion: Materials, design, and applications", Energy Strategy Reviews, vol. 53, pp. 1-16, 2024.
  • [11] S. Bairagi, S. Islam, M. Shahadat, D.M. Mulvihill and W. Ali, "Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review", Nano Energy, vol. 111, pp. 1-29, 2023.
  • [12] Z. Li, J. Roscow, H. Khanbareh, G. Haswell and C. Bowen, "Energy Harvesting from Water Flow by using Piezoelectric materials ", Advanced Energy & Sustainability Research, vol. 5, pp. 1-33, 2024.
  • [13] A. Salimi and A.A. Yousefi, "Analysis Method: FTIR studies of beta-phase crystal formation stretched PVDF films ", Polymer Testing, vol. 22, pp. 699-704, 2003.
  • [14] H. Pan, B. Na, R. Lv, C. Li, J. Zhu and Z. Yu, "Polar phase formation in poly (vinylidene fluoride) induced by melt annealing", Journal of Polymer Science, Part B: Polymer Physics, vol.50, pp. 1433–1437, 2012.
  • [15] S.F. Mendes, C.M. Costa, C. Caparros, V. Sencadas and S. Lanceros-Mendez, "Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO3 nanocomposites", Journal of Materials Science, vol. 47, pp. 1378–1388, 2012.
  • [16] Y. Wang, D. Lei, L. Wu, R. Ma, H. Ning, N. Hu and A. Lee, "Effects of stretching on phase transformation of PVDF and its copolymers: A review", Open Physics, vol. 21, 2023, 2022-0255.
  • [17] R.S. Sabry and A.D. Hussein, "PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator", Polymer Testing, vol. 79, 2019, 106001.
  • [18] H.G. Yeo, X. Ma, C. Rahn and S. Trolier-McKinstry, "Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils", Advanced Functional Materials vol.26, pp. 5940–5946, 2016.
  • [19] X. Chen, S. Xu, N. Yao and Y. Shi, "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers", Nano Letter, vol. 10, pp. 2133–2137, 2010.
  • [20] M. Sobocinski, M. Leinonen, J. Juuti, N. Mantyniemi and H. Jantunen, "A co-fired LTCC–PZT monomorph bridge type acceleration sensor", Sensors and Actuator A: Physical, vol. 216, pp. 370–375, 2014.
  • [21] X. Lin, F. Yu, X. Zhang, W. Li, Y. Zhao, X. Fei, Q. Li, C. Yang, and S. Huang, "Wearable Piezoelectric Films Based on MWCNT-BaTiO3/PVDF Composites for Energy Harvesting, Sensing, and Localization", ACS Applied Nano Materials, vol. 6, pp. 11955−11965, 2023.
  • [22] R. Sridar, V. Amith, S. Aditva, A. Gangadhar and K.A. Vishnumurthy, "Electrospun PVDF/Cloisite-30B and PVDF/BaTiO3/graphene nanofiber mats for development of nanogenerator", Journal of the Indian Chemical Society, vol. 99, 2022, 100501.
  • [23] S. K. Ghosh, A. Biswas, S. Sen, C. Das, K. Henkel, D. Schmeisser and D. Mandal, "Yb3+ assisted self-polarized PVDF based ferroelectric nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication", Nano Energy, vol. 30, pp. 621-629, 2016.
  • [24] L. H. Meng, C. Yang, J. Meng, Y. Wang, Y. Ge, Z. Shao, G. Zhang, A. L. Rogach and H. Zhong, "In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinyl alcohol nanofibers: Shape tuning and polarized emission", Nano Research, vol. 12, pp. 1411-1416, 2019.
  • [25] L. Paralı, F. Tatardar, M. Koç, A. Sarı and R. Moradi, "The piezoelectric response of electrospun PVDF/PZT incorporated with pristine graphene nanoplatelets for mechanical energy harvesting", Journal of Materials Science: Materials in Electronics, vol. 35, 41, 2024.
  • [26] John Hiley, Keith Brown and Ian McKenzie Smith, "Electrical and Electronic Technology", 10th edition, Pearson Education Limited, 2008.
  • [27] Alexander, Charles K., and Sadiku, Matthew N. O., "Fundamentals of Electric Circuits", 5th Ed, McGraw Hill, Indian Edition, 2013.
  • [28] Md. Abdus Salam and Quazi Mehbubar Rahman, "Fundamentals of Electrical Circuit Analysis", ISBN 978-981-10-8624-3 (eBook), Springer Nature Singapore Pte Ltd. 2018.
  • [29] David Halliday, Robert Resnick and Jearl Walker, "Fundamentals of Physics", 7th Ed, ISBN 978-0-471-71716-4, John Wiley & Sons Limited, 2005.
There are 29 citations in total.

Details

Primary Language English
Subjects Electronics
Journal Section Araştırma Makalesi
Authors

Levent Paralı 0000-0002-4462-7628

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date March 26, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

IEEE L. Paralı, “Design, Fabrication, and Piezoelectric Performance Evaluation of a Nanogenerator for Vibrational Energy Harvesters”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 896–904, 2024, doi: 10.17798/bitlisfen.1458956.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS