Research Article
BibTex RIS Cite

Structural Analysis of Different Hinge Positions on the Mechanical Behavior of a Wooden Door System Using ANSYS

Year 2025, Volume: 14 Issue: 1, 243 - 259, 26.03.2025
https://doi.org/10.17798/bitlisfen.1568430

Abstract

This study investigates the effect of different hinge configurations on the mechanical performance of a wooden door system using finite element analysis. Two configurations were evaluated: one where the middle hinge was positioned closer to the upper hinge, and the other where it was centrally positioned. The results show that the maximum von Mises stress for the upper hinge configuration reached 75.614 MPa, while the centrally placed hinge configuration exhibited a slightly higher stress of 78.809 MPa. However, the central hinge placement provided more uniform stress and strain distribution across the door. Deformation values were also significant, with a maximum deformation of 0.0213 mm observed for the centrally positioned hinge, offering better load distribution compared to the upper hinge configuration. These findings suggest that the central hinge placement enhances the mechanical stability and lifespan of the door by reducing localized stress concentrations. The study highlights the importance of hinge positioning in optimizing the structural integrity of wooden door systems.

Ethical Statement

There is no conflict of interest between the authors.

References

  • M. Binan, Ahşap Kapılar ve Metal Tamamlayıcı Elemanlar. YEM Yayınları, 2000.
  • M. I. Hadi, M. R. M. Akramin, and M. S. Shaari, “Finite Element Analysis of Automotive Door Hinge,” 2023, pp. 3–11. doi: 10.1007/978-981-19-1457-7_1.
  • O. Erol and H. G. Özgül, “Determining simulation parameters of prototype door hinge for correlation between simulation and experimental results in united nations economic commission for europe regulation no: 11 tests,” Designs, vol. 3, no. 1, pp. 1–20, 2019, doi: 10.3390/designs3010017.
  • R. Bayrak, H. Kenan, U. Coşkun, and N. Güzeltepe, “Finite Element Assessment and Fatigue Life Improvement of the Torsion Spring in Hinge,” J. Fail. Anal. Prev., Jan. 2025, doi: 10.1007/s11668-024-02085-4.
  • S. Bekah, “Fatigue life prediction in a door hinge system under uni-axial and multi-axial loading conditions,” Ryerson University, 2004. [Online]. Available: http://proquest.umi.com/pqdweb?did=932420431&Fmt=7&clientId=36097&RQT=309&VName=PQD
  • P. Meyer, J. Finder, and C. Hühne, “Test Methods for the Mechanical Characterization of Flexure Hinges,” Exp. Mech., vol. 63, no. 7, pp. 1203–1222, Sep. 2023, doi: 10.1007/s11340-023-00982-7.
  • S.-W. Hwang, H. Isoda, T. Nakagawa, and J. Sugiyama, “Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation,” J. Wood Sci., vol. 67, no. 1, p. 14, Dec. 2021, doi: 10.1186/s10086-021-01946-y.
  • J. Zhou, C. Hu, S. Hu, H. Yun, and G. Jiang, “Optimization of Hinge Configuration of Furniture Doors Using Finite Element Analysis,” BioResources, vol. 7, no. 4, pp. 5809–5816, Oct. 2012, doi: 10.15376/biores.7.4.5809-5816.
  • M. H. Ramage et al., “The wood from the trees: The use of timber in construction,” Renew. Sustain. Energy Rev., vol. 68, pp. 333–359, Feb. 2017, doi: 10.1016/j.rser.2016.09.107.
  • M. Ashby, “Material property data for engineering materials,” 2021.
  • TSE, “TS 825.” Accessed: Jan. 15, 2025. [Online]. Available: https://intweb.tse.org.tr/standard/standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073099098111099114086114117048089098
  • Y. F. Gorgulu, “Thermal efficiency evaluation in shell-and-tube heat exchangers: A CFD-based parametric study,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2024, doi: 10.1177/09544089241262481.
  • M. Aydin and Y. F. Gorgulu, “Structural Investigation of Wood-Inspired Cell Wall Geometries Using Additive Manufacturing: Compression Testing and Finite Element Analysis Validation,” BioResources, vol. 19, no. 4, pp. 7493–7512, 2024, doi: biores.19.4.7493-7512.
  • Ansys Inc. and A. Inc., “Introduction to Ansys Meshing.” Ansys Inc., pp. L5-16, 2011. [Online]. Available: file:///C:/Users/Furkan/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Ansys Inc. - 2011 - Introduction to Ansys Meshing.pptx
  • Ansys Inc., “Mesh Quality And Advanced Topics Ansys Workbench 16.0,” 2015.
  • S. Seker, E. S. Erdinler, and Y. Z. Erdil, “A study on hinges and cabinet doors,” in Proceedings of the XXXth International online conference Research for Furniture Industry, 2022, pp. 125–135. doi: 10.17306/mk.978-83-67112-51-2.11.
  • D. Isobe and K. Sato, “Numerical investigation on mechanical behavior of door systems during seismic excitation,” J. Build. Eng., vol. 68, no. September 2022, p. 106129, Jun. 2023, doi: 10.1016/j.jobe.2023.106129.
Year 2025, Volume: 14 Issue: 1, 243 - 259, 26.03.2025
https://doi.org/10.17798/bitlisfen.1568430

Abstract

References

  • M. Binan, Ahşap Kapılar ve Metal Tamamlayıcı Elemanlar. YEM Yayınları, 2000.
  • M. I. Hadi, M. R. M. Akramin, and M. S. Shaari, “Finite Element Analysis of Automotive Door Hinge,” 2023, pp. 3–11. doi: 10.1007/978-981-19-1457-7_1.
  • O. Erol and H. G. Özgül, “Determining simulation parameters of prototype door hinge for correlation between simulation and experimental results in united nations economic commission for europe regulation no: 11 tests,” Designs, vol. 3, no. 1, pp. 1–20, 2019, doi: 10.3390/designs3010017.
  • R. Bayrak, H. Kenan, U. Coşkun, and N. Güzeltepe, “Finite Element Assessment and Fatigue Life Improvement of the Torsion Spring in Hinge,” J. Fail. Anal. Prev., Jan. 2025, doi: 10.1007/s11668-024-02085-4.
  • S. Bekah, “Fatigue life prediction in a door hinge system under uni-axial and multi-axial loading conditions,” Ryerson University, 2004. [Online]. Available: http://proquest.umi.com/pqdweb?did=932420431&Fmt=7&clientId=36097&RQT=309&VName=PQD
  • P. Meyer, J. Finder, and C. Hühne, “Test Methods for the Mechanical Characterization of Flexure Hinges,” Exp. Mech., vol. 63, no. 7, pp. 1203–1222, Sep. 2023, doi: 10.1007/s11340-023-00982-7.
  • S.-W. Hwang, H. Isoda, T. Nakagawa, and J. Sugiyama, “Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation,” J. Wood Sci., vol. 67, no. 1, p. 14, Dec. 2021, doi: 10.1186/s10086-021-01946-y.
  • J. Zhou, C. Hu, S. Hu, H. Yun, and G. Jiang, “Optimization of Hinge Configuration of Furniture Doors Using Finite Element Analysis,” BioResources, vol. 7, no. 4, pp. 5809–5816, Oct. 2012, doi: 10.15376/biores.7.4.5809-5816.
  • M. H. Ramage et al., “The wood from the trees: The use of timber in construction,” Renew. Sustain. Energy Rev., vol. 68, pp. 333–359, Feb. 2017, doi: 10.1016/j.rser.2016.09.107.
  • M. Ashby, “Material property data for engineering materials,” 2021.
  • TSE, “TS 825.” Accessed: Jan. 15, 2025. [Online]. Available: https://intweb.tse.org.tr/standard/standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073099098111099114086114117048089098
  • Y. F. Gorgulu, “Thermal efficiency evaluation in shell-and-tube heat exchangers: A CFD-based parametric study,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2024, doi: 10.1177/09544089241262481.
  • M. Aydin and Y. F. Gorgulu, “Structural Investigation of Wood-Inspired Cell Wall Geometries Using Additive Manufacturing: Compression Testing and Finite Element Analysis Validation,” BioResources, vol. 19, no. 4, pp. 7493–7512, 2024, doi: biores.19.4.7493-7512.
  • Ansys Inc. and A. Inc., “Introduction to Ansys Meshing.” Ansys Inc., pp. L5-16, 2011. [Online]. Available: file:///C:/Users/Furkan/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Ansys Inc. - 2011 - Introduction to Ansys Meshing.pptx
  • Ansys Inc., “Mesh Quality And Advanced Topics Ansys Workbench 16.0,” 2015.
  • S. Seker, E. S. Erdinler, and Y. Z. Erdil, “A study on hinges and cabinet doors,” in Proceedings of the XXXth International online conference Research for Furniture Industry, 2022, pp. 125–135. doi: 10.17306/mk.978-83-67112-51-2.11.
  • D. Isobe and K. Sato, “Numerical investigation on mechanical behavior of door systems during seismic excitation,” J. Build. Eng., vol. 68, no. September 2022, p. 106129, Jun. 2023, doi: 10.1016/j.jobe.2023.106129.
There are 17 citations in total.

Details

Primary Language English
Subjects Finite Element Analysis , Material Design and Behaviors, Wood Physics and Mechanics
Journal Section Research Article
Authors

Yasin Furkan Görgülü 0000-0002-1828-2849

Rahim Merdan 0000-0002-8860-8218

Publication Date March 26, 2025
Submission Date October 16, 2024
Acceptance Date January 27, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE Y. F. Görgülü and R. Merdan, “Structural Analysis of Different Hinge Positions on the Mechanical Behavior of a Wooden Door System Using ANSYS”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 243–259, 2025, doi: 10.17798/bitlisfen.1568430.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS