Tarçın Ekstraktı Kullanılarak Gümüş Nanopartiküllerin Yeşil Sentezi ve Callosobruchus maculatus (Coleoptera: Chrysomelidae)’a Karşı Potansiyel İnsektisidal Etkisi
Year 2025,
Volume: 14 Issue: 1, 424 - 434, 26.03.2025
Fatma Nur Elma
,
Masood Hussain
,
Ahmet Avcı
,
Erol Pehlivan
,
Syed Tufail Hussain Sherazi
,
Siraj Uddin
Abstract
Gümüş nanopartiküllerin yeşil sentezi, indirgeme ajanı olarak tarçın ekstraktı kullanılarak gerçekleştirilmiştir. Sentezlenen gümüş nanopartiküller, tarçın ekstraktı ile kaplanmış olup çeşitli spektroskopik ve optik tekniklerle karakterize edilmiştir. UV-Visible spektroskopisi, öncü tuz konsantrasyonu, tarçın ekstraktı hacmi, pH değeri ve sıcaklık gibi reaksiyon parametrelerinin optimize edilmesi yoluyla tarçın ekstraktı ile kaplanmış gümüş nanopartiküllerin (cinnamon-AgNPs) oluşumunu doğrulamıştır. Gümüş nanopartiküllerin kristal yapısı, X-ışını kırınımı (XRD) kullanılarak belirlenmiş ve kristalin yapıda oldukları tespit edilmiştir. Nanopartiküllerin boyut analizi için transmisyon elektron mikroskobu (TEM) kullanılmıştır. Bu çalışmada, tarçın ekstraktı ile kaplanmış gümüş nanopartiküllerin (AgNPs) Callosobruchus maculatus’un (Coleoptera: Chrysomelidae) ergin dönemine karşı insektisidal etkileri değerlendirilmiştir. Ayrıca su ile hazırlanmış tarçın ekstraktının toksik etkisi de incelenmiştir. Toksik etkiler, 24, 48 ve 72 saatlik periyotlarda, farklı konsantrasyonlarda gümüş nanopartiküller ve tarçın ekstraktı (su ile hazırlanmış) kullanılarak ölçülmüştür. Sonuçlar, tarçın ekstraktı ile kaplanmış gümüş nanopartiküllerin, en yüksek konsantrasyonda 72 saat sonra maksimum toksik etki gösterdiğini (%60,72) ortaya koymuştur. Buna karşılık, yalnızca tarçın ekstraktı C. maculatus üzerinde önemli bir etki göstermemiştir. Bulgular, tarçın ekstraktı ile kaplanmış gümüş nanopartiküllerin Callosobruchus maculatus erginlerine karşı önemli insektisidal aktiviteye sahip olduğunu göstermektedir.
References
- M. E. Demirbilek, “Tarım ve gıda nanoteknolojisi,” Gıda ve Yem Bilimi Teknolojisi Dergisi, vol. 15, pp. 46–53, 2015.
- P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, “Enhancement of the second harmonic response by adsorbates on gold colloids: The effect of aggregation,” J. Phys. Chem. B, vol. 103, no. 41, pp. 8706–8710, 1999.
- S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater., vol. 13, no. 19, pp. 1501–1505, 2001.
- S. R. Nicewarner-Pena et al., “Submicrometer metallic barcodes,” Science, vol. 294, no. 5540, pp. 137–141, 2001.
- C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” in Spherical Nucleic Acids, Jenny Stanford Publishing, pp. 3–11, 2020.
- C. M. Welch and R. G. Compton, “The use of nanoparticles in electroanalysis: A review,” Anal. Bioanal. Chem., vol. 384, no. 3, pp. 601–619, 2006.
- M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol., vol. 19, no. 7, pp. 631–635, 2001.
- H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi, and T. Tsukuda, “Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water,” Langmuir, vol. 20, no. 26, pp. 11293–11296, 2004.
- S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000.
- M. Hussain et al., “Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid,” RSC Adv., vol. 6, no. 86, pp. 82882–82889, 2016.
- M. Harada, Y. Kimura, K. Saijo, T. Ogawa, and S. Isoda, “Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions,” J. Colloid Interface Sci., vol. 339, no. 2, pp. 373–381, 2009.
- M. J. Rosemary and T. Pradeep, “Solvothermal synthesis of silver nanoparticles from thiolates,” J. Colloid Interface Sci., vol. 268, no. 1, pp. 81–84, 2003.
- M. Darroudi, A. Khorsand Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi, “Green synthesis of colloidal silver nanoparticles by sonochemical method,” Mater. Lett., vol. 66, no. 1, pp. 117–120, 2012.
- G. A. Kahrilas, L. M. Wally, S. J. Fredrick, M. Hiskey, A. L. Prieto, and J. E. Owens, “Microwave-assisted green synthesis of silver nanoparticles using orange peel extract,” ACS Sustain. Chem. Eng., vol. 2, no. 3, pp. 367–376, 2014.
- Y. Zhang et al., “Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes,” Chem. Commun. (Camb.), no. 23, pp. 2814–2815, 2002.
- J. Huang et al., “Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors,” Ind. Eng. Chem. Res., vol. 47, no. 16, pp. 6081–6090, 2008.
- N. Xia, Y. Cai, T. Jiang, and J. Yao, “Green synthesis of silver nanoparticles by chemical reduction with hyaluronan,” Carbohydr. Polym., vol. 86, no. 2, pp. 956–961, 2011.
- N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B, vol. 107, no. 24, pp. 5723–5727, 2003.
- R. Arunachalam et al., “Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation,” Colloids Surf. B Biointerfaces, vol. 94, pp. 226–230, 2012.
- S. Navaladian et al., “Thermal decomposition as route for silver nanoparticles,” Nanoscale Res. Lett., vol. 2, no. 1, pp. 44–48, 2006.
- S. Iravani, “Green synthesis of metal nanoparticles using plants,” Green Chem., vol. 13, no. 10, pp. 2638–2650, 2011.
- A. U. Khan, “Medicine at nanoscale: a new horizon,” Int. J. Nanomedicine, vol. 7, pp. 2997–2998, 2012.
- P. Logeswari, S. Silambarasan, and J. Abraham, “Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property,” J. Saudi Chem. Soc., vol. 19, no. 3, pp. 311–317, 2015.
- D. Erkakan, N. Y. Diker, M. Önal, and I. I. Çankaya, “Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity,” Hacettepe J. Biol. Chem., vol. 50, no. 4, pp. 397–414, 2022.
- J. Huignard, B. Leroi, I. Alzouma, and J. F. Germain, “Oviposition and development of Bruchidius atrolineatus (Pic) and Callosobrochus maculatus (F.) in Vigna unguiculata cultures in Niger,” Int. J. Trop. Insect Sci., vol. 6, no. 6, pp. 691–699, 1985.
- A. Rahman and F. A. Talukder, “Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus,” J. Insect Sci., vol. 6, no. 3, pp. 1–10, 2006.
- S. S. Ali et al., “Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives,” Sci. Total Environ., vol. 792, Art. no. 148359, 2021.
- O. Dura, A. Tülek, İ. Sönmez, F. D. Erdoğuş, A. Yeşilayer, and İ. Kepenekci, “Lantana camara L. (Lamiales: Verbenaceae)’nın sulu ekstraktı kullanılarak hazırlanan gümüş nanopartikül (AgNPs) uygulamalarının Buğday gal nematodu [Anguina tritici Thorne, 1949 (Nematoda: Anguinidae)]’na etkileri,” Bitki Koruma Bülteni, vol. 59, no. 2, pp. 49–53, 2019.
- G. Rajakumar and A. A. Rahuman, “Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus,” Res. Vet. Sci., vol. 93, no. 1, pp. 303–309, 2012.
- S. M. Roopan et al., “Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity,” Ind. Crops Prod., vol. 43, pp. 631–635, 2013.
- S.-E. A. Araj, N. M. Salem, I. H. Ghabeish, and A. M. Awwad, “Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae),” J. Nanomater., vol. 2015, no. 1, pp. 1–9, 2015.
- F.-L. Yang, X.-G. Li, F. Zhu, and C.-L. Lei, “Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae),” J. Agric. Food Chem., vol. 57, no. 21, pp. 10156–10162, 2009.
- R. S. Esteves et al., “Insecticidal activity evaluation of Persea venosa Nees & Mart. essential oil and its nanoemulsion against the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) and pollinator bees,” Ind. Crops Prod., vol. 194, Art. no. 116348, 2023.
- A. A. Zahir, A. Bagavan, C. Kamaraj, G. Elango, and A. A. Rahuman, “Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae,” J. Biopesticides, vol. 5, 2012.
- F. S. Jafer and M. R. Annon, “Larvicidal effect of pure and green-synthesized silver nanoparticles against Tribolium castaneum and Callosobruchus maculatus,” J. Global Pharma Technol., vol. 10, no. 3, pp. 448–454, 2018.
- N. A. E. H. Hassanain, A. Z. Shehata, M. M. Mokhtar, R. M. Shaapan, M. A. E. H. Hassanain, and S. Zaky, “Comparison Between Insecticidal Activity of Lantana camara Extract and its Synthesized Nanoparticles Against Anopheline mosquitoes,” Pak. J. Biol. Sci., vol. 22, no. 7, pp. 327–334, 2019.
- H. Balcı, F. Ersin, and E. Durmuşoğlu, “Azadirachta indica A. Juss (Meliaceae) ve Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae) ekstraktlarının klasik ve nano formülasyonlarının Tetranychus urticae Koch ve Amblyseius swirskii Athias-Henriot’ye etkilerinin belirlenmesi,” Türkiye Biyolojik Mücadele Dergisi, vol. 11, no. 2, pp. 237–251, 2020.
- K. Velayutham et al., “Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus,” Asian Pac. J. Trop. Med., vol. 6, no. 2, pp. 95–101, 2013.
- W. S. Abbott, “A method of computing the effectiveness of an insecticide,” J. Econ. Entomol., vol. 18, no. 2, pp. 265–267, 1925.
- A. Ahmad, Z. Mushtaq, F. Saeed, M. Afzaal, and E. A. Jbawi, “Ultrasonic-assisted green synthesis of silver nanoparticles through cinnamon extract: biochemical, structural, and antimicrobial properties,” Int. J. Food Prop., vol. 26, no. 1, pp. 1984–1994, 2023.
- D. K. Takci, S. Genc, and H. A. M. Takci, “Cinnamon-based rapid biosynthesis of silver nanoparticles; its characterization and antibacterial properties,” J. Cryst. Growth, vol. 623, 2023.
- M. T. Al-Husseini, H. R. Al-Mousawi, N. J. Kadhim, A. A.-R. Madhloom, D. Z. Aziz, and A. J. K. Muha, “Biological activity of Punica granatum silver nanoparticles against fourth larvae of Culex quinquefasciatus mosquito,” J. Phys.: Conf. Ser., vol. 1660, pp. 012–013, 2020.
- J. T. da Costa et al., “Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman) on beans,” J. Stored Prod. Res., vol. 56, pp. 49–53, 2014.
- A. M. M. Giongo, J. D. Vendramim, and M. R. Forim, “Evaluation of neem-based nanoformulations as alternative to control fall armyworm,” Ciênc. Agrotecnologia, vol. 40, no. 1, pp. 26–36, 2016.
- T. Stadler, M. Buteler, and D. K. Weaver, “Novel use of nanostructured alumina as an insecticide: Nanostructured alumina as insecticide,” Pest Manag. Sci., vol. 66, no. 6, pp. 577–579, 2010.
Green Synthesis of Silver Nanoparticles Mediated by Cinnamon Extract and its Potential Insecticidal Effect Against Callosobruchus Maculatus (Coleoptera: Chrysomelidae)
Year 2025,
Volume: 14 Issue: 1, 424 - 434, 26.03.2025
Fatma Nur Elma
,
Masood Hussain
,
Ahmet Avcı
,
Erol Pehlivan
,
Syed Tufail Hussain Sherazi
,
Siraj Uddin
Abstract
Silver nanoparticles were successfully synthesized using cinnamon extract as a reducing agent. The synthesized nanoparticles, coated with cinnamon extract, were characterized through various optical and spectroscopic techniques. UV-visible spectroscopy confirmed the formation of cinnamon-extract-coated silver nanoparticles (Cinnamon-AgNPs) by optimizing parameters such as precursor salt concentration, pH, temperature and extract volume. The crystalline structure of the nanoparticles was examined using X-ray diffraction (XRD), while size distribution was analyzed through transmission electron microscopy (TEM). It was observed that cinnamon extract effectively stabilized silver nanoparticles and the average particle size was 23.3 nm, with a near-spherical shape. Advances in nanotechnology have recently offered novel approaches in plant protection strategies. The increasing resistance of stored-product pests like Callosobruchus maculatus to conventional insecticides necessitates the exploration of eco-friendly alternatives. In this study, the insecticidal activity of silver nanoparticles coated with cinnamon extract was evaluated against the adult stage of Callosobruchus maculatus. Additionally, the aqueous extract of cinnamon was also evaluated. Toxicity assays were conducted at varying concentrations of the nanoparticles and cinnamon extract, with exposure durations of 24, 48, and 72 hours. The results revealed that cinnamon-extract-coated silver nanoparticles exhibited the highest toxic effect at the highest concentration after 72 hours (60.72%). In contrast, the aqueous extract of cinnamon did not exhibit a significant toxic effect on C. maculatus. This significant difference highlights the synergistic insecticidal effect of the combination of silver nanoparticles and cinnamon extract. Overall, the findings highlight the significant potential of cinnamon-extract-mediated silver nanoparticles as an effective insecticidal agent against Callosobruchus maculatus.
Ethical Statement
The study is complied with research and publication ethics.
References
- M. E. Demirbilek, “Tarım ve gıda nanoteknolojisi,” Gıda ve Yem Bilimi Teknolojisi Dergisi, vol. 15, pp. 46–53, 2015.
- P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, “Enhancement of the second harmonic response by adsorbates on gold colloids: The effect of aggregation,” J. Phys. Chem. B, vol. 103, no. 41, pp. 8706–8710, 1999.
- S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater., vol. 13, no. 19, pp. 1501–1505, 2001.
- S. R. Nicewarner-Pena et al., “Submicrometer metallic barcodes,” Science, vol. 294, no. 5540, pp. 137–141, 2001.
- C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” in Spherical Nucleic Acids, Jenny Stanford Publishing, pp. 3–11, 2020.
- C. M. Welch and R. G. Compton, “The use of nanoparticles in electroanalysis: A review,” Anal. Bioanal. Chem., vol. 384, no. 3, pp. 601–619, 2006.
- M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol., vol. 19, no. 7, pp. 631–635, 2001.
- H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi, and T. Tsukuda, “Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water,” Langmuir, vol. 20, no. 26, pp. 11293–11296, 2004.
- S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000.
- M. Hussain et al., “Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid,” RSC Adv., vol. 6, no. 86, pp. 82882–82889, 2016.
- M. Harada, Y. Kimura, K. Saijo, T. Ogawa, and S. Isoda, “Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions,” J. Colloid Interface Sci., vol. 339, no. 2, pp. 373–381, 2009.
- M. J. Rosemary and T. Pradeep, “Solvothermal synthesis of silver nanoparticles from thiolates,” J. Colloid Interface Sci., vol. 268, no. 1, pp. 81–84, 2003.
- M. Darroudi, A. Khorsand Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi, “Green synthesis of colloidal silver nanoparticles by sonochemical method,” Mater. Lett., vol. 66, no. 1, pp. 117–120, 2012.
- G. A. Kahrilas, L. M. Wally, S. J. Fredrick, M. Hiskey, A. L. Prieto, and J. E. Owens, “Microwave-assisted green synthesis of silver nanoparticles using orange peel extract,” ACS Sustain. Chem. Eng., vol. 2, no. 3, pp. 367–376, 2014.
- Y. Zhang et al., “Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes,” Chem. Commun. (Camb.), no. 23, pp. 2814–2815, 2002.
- J. Huang et al., “Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors,” Ind. Eng. Chem. Res., vol. 47, no. 16, pp. 6081–6090, 2008.
- N. Xia, Y. Cai, T. Jiang, and J. Yao, “Green synthesis of silver nanoparticles by chemical reduction with hyaluronan,” Carbohydr. Polym., vol. 86, no. 2, pp. 956–961, 2011.
- N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B, vol. 107, no. 24, pp. 5723–5727, 2003.
- R. Arunachalam et al., “Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation,” Colloids Surf. B Biointerfaces, vol. 94, pp. 226–230, 2012.
- S. Navaladian et al., “Thermal decomposition as route for silver nanoparticles,” Nanoscale Res. Lett., vol. 2, no. 1, pp. 44–48, 2006.
- S. Iravani, “Green synthesis of metal nanoparticles using plants,” Green Chem., vol. 13, no. 10, pp. 2638–2650, 2011.
- A. U. Khan, “Medicine at nanoscale: a new horizon,” Int. J. Nanomedicine, vol. 7, pp. 2997–2998, 2012.
- P. Logeswari, S. Silambarasan, and J. Abraham, “Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property,” J. Saudi Chem. Soc., vol. 19, no. 3, pp. 311–317, 2015.
- D. Erkakan, N. Y. Diker, M. Önal, and I. I. Çankaya, “Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity,” Hacettepe J. Biol. Chem., vol. 50, no. 4, pp. 397–414, 2022.
- J. Huignard, B. Leroi, I. Alzouma, and J. F. Germain, “Oviposition and development of Bruchidius atrolineatus (Pic) and Callosobrochus maculatus (F.) in Vigna unguiculata cultures in Niger,” Int. J. Trop. Insect Sci., vol. 6, no. 6, pp. 691–699, 1985.
- A. Rahman and F. A. Talukder, “Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus,” J. Insect Sci., vol. 6, no. 3, pp. 1–10, 2006.
- S. S. Ali et al., “Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives,” Sci. Total Environ., vol. 792, Art. no. 148359, 2021.
- O. Dura, A. Tülek, İ. Sönmez, F. D. Erdoğuş, A. Yeşilayer, and İ. Kepenekci, “Lantana camara L. (Lamiales: Verbenaceae)’nın sulu ekstraktı kullanılarak hazırlanan gümüş nanopartikül (AgNPs) uygulamalarının Buğday gal nematodu [Anguina tritici Thorne, 1949 (Nematoda: Anguinidae)]’na etkileri,” Bitki Koruma Bülteni, vol. 59, no. 2, pp. 49–53, 2019.
- G. Rajakumar and A. A. Rahuman, “Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus,” Res. Vet. Sci., vol. 93, no. 1, pp. 303–309, 2012.
- S. M. Roopan et al., “Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity,” Ind. Crops Prod., vol. 43, pp. 631–635, 2013.
- S.-E. A. Araj, N. M. Salem, I. H. Ghabeish, and A. M. Awwad, “Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae),” J. Nanomater., vol. 2015, no. 1, pp. 1–9, 2015.
- F.-L. Yang, X.-G. Li, F. Zhu, and C.-L. Lei, “Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae),” J. Agric. Food Chem., vol. 57, no. 21, pp. 10156–10162, 2009.
- R. S. Esteves et al., “Insecticidal activity evaluation of Persea venosa Nees & Mart. essential oil and its nanoemulsion against the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) and pollinator bees,” Ind. Crops Prod., vol. 194, Art. no. 116348, 2023.
- A. A. Zahir, A. Bagavan, C. Kamaraj, G. Elango, and A. A. Rahuman, “Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae,” J. Biopesticides, vol. 5, 2012.
- F. S. Jafer and M. R. Annon, “Larvicidal effect of pure and green-synthesized silver nanoparticles against Tribolium castaneum and Callosobruchus maculatus,” J. Global Pharma Technol., vol. 10, no. 3, pp. 448–454, 2018.
- N. A. E. H. Hassanain, A. Z. Shehata, M. M. Mokhtar, R. M. Shaapan, M. A. E. H. Hassanain, and S. Zaky, “Comparison Between Insecticidal Activity of Lantana camara Extract and its Synthesized Nanoparticles Against Anopheline mosquitoes,” Pak. J. Biol. Sci., vol. 22, no. 7, pp. 327–334, 2019.
- H. Balcı, F. Ersin, and E. Durmuşoğlu, “Azadirachta indica A. Juss (Meliaceae) ve Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae) ekstraktlarının klasik ve nano formülasyonlarının Tetranychus urticae Koch ve Amblyseius swirskii Athias-Henriot’ye etkilerinin belirlenmesi,” Türkiye Biyolojik Mücadele Dergisi, vol. 11, no. 2, pp. 237–251, 2020.
- K. Velayutham et al., “Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus,” Asian Pac. J. Trop. Med., vol. 6, no. 2, pp. 95–101, 2013.
- W. S. Abbott, “A method of computing the effectiveness of an insecticide,” J. Econ. Entomol., vol. 18, no. 2, pp. 265–267, 1925.
- A. Ahmad, Z. Mushtaq, F. Saeed, M. Afzaal, and E. A. Jbawi, “Ultrasonic-assisted green synthesis of silver nanoparticles through cinnamon extract: biochemical, structural, and antimicrobial properties,” Int. J. Food Prop., vol. 26, no. 1, pp. 1984–1994, 2023.
- D. K. Takci, S. Genc, and H. A. M. Takci, “Cinnamon-based rapid biosynthesis of silver nanoparticles; its characterization and antibacterial properties,” J. Cryst. Growth, vol. 623, 2023.
- M. T. Al-Husseini, H. R. Al-Mousawi, N. J. Kadhim, A. A.-R. Madhloom, D. Z. Aziz, and A. J. K. Muha, “Biological activity of Punica granatum silver nanoparticles against fourth larvae of Culex quinquefasciatus mosquito,” J. Phys.: Conf. Ser., vol. 1660, pp. 012–013, 2020.
- J. T. da Costa et al., “Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman) on beans,” J. Stored Prod. Res., vol. 56, pp. 49–53, 2014.
- A. M. M. Giongo, J. D. Vendramim, and M. R. Forim, “Evaluation of neem-based nanoformulations as alternative to control fall armyworm,” Ciênc. Agrotecnologia, vol. 40, no. 1, pp. 26–36, 2016.
- T. Stadler, M. Buteler, and D. K. Weaver, “Novel use of nanostructured alumina as an insecticide: Nanostructured alumina as insecticide,” Pest Manag. Sci., vol. 66, no. 6, pp. 577–579, 2010.