Research Article
BibTex RIS Cite

Urban Heat Island Effect of Large-Scale Residential Areas: A Spatiotemporal Analysis of Etimesgut District in Ankara

Year 2025, Volume: 14 Issue: 1, 435 - 463, 26.03.2025
https://doi.org/10.17798/bitlisfen.1596470

Abstract

Urban heat islands (UHI) disrupt the environmental balance in urban areas. The rate and impact of this formation are intensified by the increase in impervious surfaces, along with urban sprawl and land use changes. This increase reduces natural water absorption, causing heat retention and airflow restriction. Changes in land cover alter surface albedo, affecting energy interactions between the atmosphere and the surface, leading to local climate change. Remote detection methods are important tools for data gathering and assessing UHIs. This study uses a spatiotemporal analysis to examine the relationship between urban development and UHI change between 2005 and 2021, focusing on the Etimesgut district, located on the western development axis of Ankara, where land use changed from agricultural and public land to large-scale residential areas in the last three decades, in particular along with the development of mass housing by Housing Development Agency. Therefore, the district was under pressure for urban growth and mainly developed by transferring public property to private property. The analysis explains how urban sprawl increases land surface temperature (LST), contributing to the formation of UHIs. This study shows that in the Etimesgut district, where the built-up area has increased significantly between 2005 and 2021, from 9,040 ha to 12,934 ha, showing a 43.08% increase, there has been an increase in the LST by about four °C, rising from 43.33°C to 47.02°C in July. Satellite imagery-based findings indicate that the replacement of agricultural land by built-up areas accelerates the rise in temperatures in the region by weakening natural cooling mechanisms. This study intends to inform urban policy and policy development and offers an evidence-based approach using the Etimesgut district in Ankara as a case study. Urban development policies should cover climate-prone strategies and thermal governance to mitigate the UHI effects when barren or agricultural land is replaced with impervious surfaces of large-scale residential areas.

Ethical Statement

The study is complied with research and publication ethics

Thanks

This study is derived from the doctoral thesis " Fractal Analysis of the Impact of Urban Growth on Urban Heat Island Formation."

References

  • C. Altenburg, “Chapter 1 institutional and social capacities in lead cities in Europe and the United States: Success factors for urban sustainability?,” in Research in Urban Sociology, Emerald Group Publishing Limited, 2012, pp. 3–28.
  • J.-H. Chang, “Thermal governance, urban metabolism and carbonised comfort: Air-conditioning and urbanisation in the Gulf and Doha,” Urban Stud., vol. 61, no. 15, pp. 2928–2944, 2024.
  • F. Musco, Ed., Counteracting urban heat island effects in a global climate change scenario. Cham: Springer International Publishing, 2016.
  • V. Costanzo, G. Evola, and L. Marletta, Urban heat stress and mitigation solutions: An engineering perspective. London, England: Taylor & Francis, 2021.
  • N. Badaro-Saliba, J. Adjizian-Gerard, R. Zaarour, and G. Najjar, “LCZ scheme for assessing Urban Heat Island intensity in a complex urban area (Beirut, Lebanon),” Urban Clim., vol. 37, no. 100846, p. 100846, 2021.
  • P. Singh, N. Kikon, and P. Verma, “Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate,” Sustain. Cities Soc., vol. 32, pp. 100–114, 2017.
  • U. Rajasekar and Q. Weng, “Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis,” ISPRS J. Photogramm. Remote Sens., vol. 64, no. 1, pp. 86–96, 2009.
  • R. Paolini and M. Santamouris, Urban Climate Change and Heat Islands: Characterization, impacts, and mitigation. Elsevier, 2022.
  • A. Ali and Z. Alam Nayyar, “A Modified Built-up Index (MBI) for automatic urban area extraction from Landsat 8 Imagery,” Infrared Phys. Technol., vol. 116, no. 103769, p. 103769, 2021.
  • R. Neog, “Analyzing dynamic behavior of land use and land surface temperature in the city of Imphal, India,” Acta Geophys., vol. 69, no. 6, pp. 2275–2290, 2021.
  • X. Zhou and H. Chen, “Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon,” Sci. Total Environ., vol. 635, pp. 1467–1476, 2018.
  • P. Mohammad, A. Goswami, S. Chauhan, and S. Nayak, “Machine learning algorithm based prediction of land use land cover and land surface temperature changes to characterize the surface urban heat island phenomena over Ahmedabad city, India,” Urban Clim., vol. 42, no. 101116, p. 101116, 2022.
  • O. A. Fashae, E. G. Adagbasa, A. O. Olusola, and R. O. Obateru, “Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria,” Environ. Monit. Assess., vol. 192, no. 2, 2020.
  • A. Achmad, N. Fadhly, A. Deli, and I. Ramli, “Urban growth and its impact on land surface temperature in an industrial city in Aceh, Indonesia,” Lett. Spat. Resour. Sci., vol. 15, no. 1, pp. 39–58, 2022.
  • N. I. Molina-Gómez, L. M. Varon-Bravo, R. Sierra-Parada, and P. A. López-Jiménez, “Urban growth and heat islands: A case study in micro-territories for urban sustainability,” Urban Ecosyst., vol. 25, no. 5, pp. 1379–1397, 2022.
  • M. Carpio, Á. González, M. González, and K. Verichev, “Influence of pavements on the urban heat island phenomenon: A scientific evolution analysis,” Energy Build., vol. 226, no. 110379, p. 110379, 2020.
  • K. J. Gohain, P. Mohammad, and A. Goswami, “Assessing the impact of land use land cover changes on land surface temperature over Pune city, India,” Quat. Int., vol. 575–576, pp. 259–269, 2021.
  • A.-. A. Kafy, A.-A.- Faisal, A. Al Rakib, M. A. Fattah, Z. A. Rahaman, and G. S. Sattar, “Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh,” Build. Environ., vol. 208, no. 108573, p. 108573, 2022.
  • R. J. Corner, A. M. Dewan, and S. Chakma, “Monitoring and prediction of land-use and land-cover (LULC) change,” in Dhaka Megacity, Dordrecht: Springer Netherlands, 2014, pp. 75–97.
  • M. Waleed and M. Sajjad, “Warming cities in Pakistan: Evaluating spatial–temporal dynamics of urban thermal field variance index under rapid urbanization,” in Urban Sustainability, Singapore: Springer Nature Singapore, 2023, pp. 67–82.
  • B. Ahmed, M. Kamruzzaman, X. Zhu, M. Rahman, and K. Choi, “Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh,” Remote Sens. (Basel), vol. 5, no. 11, pp. 5969–5998, 2013.
  • “Nüfus İstatistikleri Portalı,” Gov.tr. [Online]. Available: https://nip.tuik.gov.tr/. [Accessed: 04-Dec-2024].
  • “2023 Başkent Ankara Nazım İmar Planı,” Bel.tr. [Online]. Available: https://www.ankara.bel.tr/ankara-buyuksehir-belediyesi-nazim-plan. [Accessed: 04-Dec-2024].
  • B. Günay, "Ankara çekirdek alanının oluşumu ve 1990 nazım planı hakkında bir değerlendirme," in Cumhuriyet’in Ankara’sı, T. Şenyapılı, Ed. Ankara, Türkiye: ODTÜ Geliştirme Vakfı Yayıncılık, 2005, pp. 60–118.
  • Usgs.gov. [Online]. Available: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook. [Accessed: 04-Dec-2024].
  • N. Nazarian and L. Norford, “Measuring and assessing thermal exposure,” in Urban Heat Stress and Mitigation Solutions, London: Routledge, 2021, pp. 40–61.
  • Y. Ghobadi, B. Pradhan, H. Z. M. Shafri, and K. Kabiri, “Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran,” Arab. J. Geosci., vol. 8, no. 1, pp. 525–537, 2015.
  • Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp. 467–483, 2004.
  • Academia.edu. [Online]. Available: https://www.academia.edu/download/56616293/IJET-V4I1P4.pdf. [Accessed: 04-Dec-2024].
  • N. S.-N. Lam, “Spatial interpolation methods: A review,” Am. Cartogr., vol. 10, no. 2, pp. 129–150, 1983.
  • A. İlker, Ö. Terzi̇, and E. Şener, “Yağışın Alansal Dağılımının Haritalandırılmasında Enterpolasyon Yöntemlerinin Karşılaştırılması: Akdeniz Bölgesi Örneği,” Tek. Dergi, vol. 30, no. 3, pp. 9213–9219, 2019.
  • K. M. Çubukçu, Planlamada Klasik Sayısal Yöntemler. Ankara, Türkiye: ODTÜ Geliştirme Vakfı, 2008.
  • M. E. Hereher, “Assessment of seasonal warming trends at the Nile Delta: a paradigm for human-induced climate change,” Environ. Monit. Assess., vol. 196, no. 1, 2024.
  • Researchgate.net. [Online]. Available:https://www.researchgate.net/publication/346534911_Effects_of_urban_growth_on_the_land_surface_temperature_a_case_study_in_Taiyuan_China. [Accessed: 04-Dec-2024].
  • Org.tr. [Online]. Available: https://dergipark.org.tr/en/pub/gazimmfd/issue/6678/88558. [Accessed: 04-Dec-2024].
  • Org.tr. [Online]. Available: https://dergipark.org.tr/en/pub/sdufenbed/article/221982. [Accessed: 04-Dec-2024].
  • Edu.tr. [Online]. Available: https://open.metu.edu.tr/handle/11511/58936. [Accessed: 04-Dec-2024].
  • H. Yıldız, A. Mermer, E. Ünal, ve F. Akbaş, “Türkiye Bitki Örtüsünün NDVI Verileri ile Zamansal ve Mekansal Analizi”, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, c. 21, sy. 2, ss. 50–56, 2012.
  • I. D. Stewart and G. Mills, The Urban Heat Island. Elsevier, 2021.
  • M. N. Rahman, M. R. H. Rony, F. A. Jannat, S. C. Pal, M. S. Islam, E. Alam, and A. R. M. T. Islam, "Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools," Climate, vol.10, no.1, p.3, 2022.
  • T. Şenyapılı, Baraka’dan Gecekonduya. İstanbul: İletişim Yayınları, 2004.
  • L. Hao, G. Sun, X. Huang, R. Tang, K. Jin, Y. Lai, D. Chen, Y. Zhang, D. Zhou, Z.-L. Yang, L. Wang, G. Dong, and W. Li, "Urbanization alters atmospheric dryness through land evapotranspiration," npj Climate and Atmospheric Science, vol. 6, Art. no. 149, Sep. 2023. [Online]. Available: https://doi.org/10.1038/s41612-023-00429-x.

ANKARA ETİMESGUT İLÇESİNDEKİ BÜYÜK ÖLÇEKLİ KONUT ALANLARININ KENTSEL ISI ADASI ETKİSİ: MEKÂNSAL VE ZAMANSAL BİR ANALİZ

Year 2025, Volume: 14 Issue: 1, 435 - 463, 26.03.2025
https://doi.org/10.17798/bitlisfen.1596470

Abstract

Kentsel ısı adaları (UHI), kentsel alanlarda çevresel dengeyi bozmaktadır. Bu oluşumun hızı ve etkisi, geçirimsiz yüzeylerin artışı, kentsel yayılma ve arazi kullanım değişiklikleri ile artmaktadır. Bu artış, doğal su emilimini azaltarak ısı birikimine ve hava akışının kısıtlanmasına neden olmaktadır. Arazi örtüsündeki değişiklikler, yüzey albedosunu değiştirerek atmosfer ile yüzey arasındaki enerji etkileşimlerini etkilemekte ve yerel iklim değişikliğine yol açmaktadır. Uzaktan algılama yöntemleri, veri toplama ve UHI’leri değerlendirme için önemli araçlardır. Bu çalışma, 2005 ve 2021 yılları arasında kentsel gelişim ile UHI değişimi arasındaki ilişkiyi, son yirmi yılda arazi kullanımının tarımdan büyük ölçekli konut alanlarına dönüştüğü Etimesgut ilçesine odaklanarak mekânsal ve zamansal bir analizle incelemektedir. Analiz, kentsel yayılmanın arazi yüzeyi sıcaklığını (LST) nasıl artırdığını ve UHI oluşumuna nasıl katkıda bulunduğunu açıklamaktadır. Çalışmamız, 2005 ile 2021 yılları arasında yapılaşmış alanların 9.040 hektardan 12.934 hektara çıkarak %43,08 oranında artış gösterdiği Etimesgut ilçesinde, Temmuz ayında arazi yüzeyi sıcaklığında yaklaşık 4 °C'lik bir artış olduğunu ve sıcaklıkların 43,33 °C’den 47,02 °C’ye yükseldiğini göstermektedir. Uydu görüntülerine dayalı bulgular, tarım alanlarının yapılaşmış alanlarla değiştirilmesinin doğal soğutma mekanizmalarını zayıflatarak bölgedeki sıcaklık artışını hızlandırdığını ortaya koymaktadır. Çalışmamız, kentsel politika ve karar alma süreçlerini bilgilendirmeyi amaçlamakta ve Ankara'nın Etimesgut ilçesini bir vaka çalışması olarak kullanarak kanıta dayalı bir yaklaşım sunmaktadır. Kentsel gelişim politikaları, çıplak veya tarım alanlarının geçirimsiz yüzeylere sahip büyük ölçekli konut alanlarıyla değiştirildiği durumlarda, UHI etkilerini azaltmak için iklime duyarlı stratejiler ve termal yönetim politikalarını içermelidir.

References

  • C. Altenburg, “Chapter 1 institutional and social capacities in lead cities in Europe and the United States: Success factors for urban sustainability?,” in Research in Urban Sociology, Emerald Group Publishing Limited, 2012, pp. 3–28.
  • J.-H. Chang, “Thermal governance, urban metabolism and carbonised comfort: Air-conditioning and urbanisation in the Gulf and Doha,” Urban Stud., vol. 61, no. 15, pp. 2928–2944, 2024.
  • F. Musco, Ed., Counteracting urban heat island effects in a global climate change scenario. Cham: Springer International Publishing, 2016.
  • V. Costanzo, G. Evola, and L. Marletta, Urban heat stress and mitigation solutions: An engineering perspective. London, England: Taylor & Francis, 2021.
  • N. Badaro-Saliba, J. Adjizian-Gerard, R. Zaarour, and G. Najjar, “LCZ scheme for assessing Urban Heat Island intensity in a complex urban area (Beirut, Lebanon),” Urban Clim., vol. 37, no. 100846, p. 100846, 2021.
  • P. Singh, N. Kikon, and P. Verma, “Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate,” Sustain. Cities Soc., vol. 32, pp. 100–114, 2017.
  • U. Rajasekar and Q. Weng, “Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis,” ISPRS J. Photogramm. Remote Sens., vol. 64, no. 1, pp. 86–96, 2009.
  • R. Paolini and M. Santamouris, Urban Climate Change and Heat Islands: Characterization, impacts, and mitigation. Elsevier, 2022.
  • A. Ali and Z. Alam Nayyar, “A Modified Built-up Index (MBI) for automatic urban area extraction from Landsat 8 Imagery,” Infrared Phys. Technol., vol. 116, no. 103769, p. 103769, 2021.
  • R. Neog, “Analyzing dynamic behavior of land use and land surface temperature in the city of Imphal, India,” Acta Geophys., vol. 69, no. 6, pp. 2275–2290, 2021.
  • X. Zhou and H. Chen, “Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon,” Sci. Total Environ., vol. 635, pp. 1467–1476, 2018.
  • P. Mohammad, A. Goswami, S. Chauhan, and S. Nayak, “Machine learning algorithm based prediction of land use land cover and land surface temperature changes to characterize the surface urban heat island phenomena over Ahmedabad city, India,” Urban Clim., vol. 42, no. 101116, p. 101116, 2022.
  • O. A. Fashae, E. G. Adagbasa, A. O. Olusola, and R. O. Obateru, “Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria,” Environ. Monit. Assess., vol. 192, no. 2, 2020.
  • A. Achmad, N. Fadhly, A. Deli, and I. Ramli, “Urban growth and its impact on land surface temperature in an industrial city in Aceh, Indonesia,” Lett. Spat. Resour. Sci., vol. 15, no. 1, pp. 39–58, 2022.
  • N. I. Molina-Gómez, L. M. Varon-Bravo, R. Sierra-Parada, and P. A. López-Jiménez, “Urban growth and heat islands: A case study in micro-territories for urban sustainability,” Urban Ecosyst., vol. 25, no. 5, pp. 1379–1397, 2022.
  • M. Carpio, Á. González, M. González, and K. Verichev, “Influence of pavements on the urban heat island phenomenon: A scientific evolution analysis,” Energy Build., vol. 226, no. 110379, p. 110379, 2020.
  • K. J. Gohain, P. Mohammad, and A. Goswami, “Assessing the impact of land use land cover changes on land surface temperature over Pune city, India,” Quat. Int., vol. 575–576, pp. 259–269, 2021.
  • A.-. A. Kafy, A.-A.- Faisal, A. Al Rakib, M. A. Fattah, Z. A. Rahaman, and G. S. Sattar, “Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh,” Build. Environ., vol. 208, no. 108573, p. 108573, 2022.
  • R. J. Corner, A. M. Dewan, and S. Chakma, “Monitoring and prediction of land-use and land-cover (LULC) change,” in Dhaka Megacity, Dordrecht: Springer Netherlands, 2014, pp. 75–97.
  • M. Waleed and M. Sajjad, “Warming cities in Pakistan: Evaluating spatial–temporal dynamics of urban thermal field variance index under rapid urbanization,” in Urban Sustainability, Singapore: Springer Nature Singapore, 2023, pp. 67–82.
  • B. Ahmed, M. Kamruzzaman, X. Zhu, M. Rahman, and K. Choi, “Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh,” Remote Sens. (Basel), vol. 5, no. 11, pp. 5969–5998, 2013.
  • “Nüfus İstatistikleri Portalı,” Gov.tr. [Online]. Available: https://nip.tuik.gov.tr/. [Accessed: 04-Dec-2024].
  • “2023 Başkent Ankara Nazım İmar Planı,” Bel.tr. [Online]. Available: https://www.ankara.bel.tr/ankara-buyuksehir-belediyesi-nazim-plan. [Accessed: 04-Dec-2024].
  • B. Günay, "Ankara çekirdek alanının oluşumu ve 1990 nazım planı hakkında bir değerlendirme," in Cumhuriyet’in Ankara’sı, T. Şenyapılı, Ed. Ankara, Türkiye: ODTÜ Geliştirme Vakfı Yayıncılık, 2005, pp. 60–118.
  • Usgs.gov. [Online]. Available: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook. [Accessed: 04-Dec-2024].
  • N. Nazarian and L. Norford, “Measuring and assessing thermal exposure,” in Urban Heat Stress and Mitigation Solutions, London: Routledge, 2021, pp. 40–61.
  • Y. Ghobadi, B. Pradhan, H. Z. M. Shafri, and K. Kabiri, “Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran,” Arab. J. Geosci., vol. 8, no. 1, pp. 525–537, 2015.
  • Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp. 467–483, 2004.
  • Academia.edu. [Online]. Available: https://www.academia.edu/download/56616293/IJET-V4I1P4.pdf. [Accessed: 04-Dec-2024].
  • N. S.-N. Lam, “Spatial interpolation methods: A review,” Am. Cartogr., vol. 10, no. 2, pp. 129–150, 1983.
  • A. İlker, Ö. Terzi̇, and E. Şener, “Yağışın Alansal Dağılımının Haritalandırılmasında Enterpolasyon Yöntemlerinin Karşılaştırılması: Akdeniz Bölgesi Örneği,” Tek. Dergi, vol. 30, no. 3, pp. 9213–9219, 2019.
  • K. M. Çubukçu, Planlamada Klasik Sayısal Yöntemler. Ankara, Türkiye: ODTÜ Geliştirme Vakfı, 2008.
  • M. E. Hereher, “Assessment of seasonal warming trends at the Nile Delta: a paradigm for human-induced climate change,” Environ. Monit. Assess., vol. 196, no. 1, 2024.
  • Researchgate.net. [Online]. Available:https://www.researchgate.net/publication/346534911_Effects_of_urban_growth_on_the_land_surface_temperature_a_case_study_in_Taiyuan_China. [Accessed: 04-Dec-2024].
  • Org.tr. [Online]. Available: https://dergipark.org.tr/en/pub/gazimmfd/issue/6678/88558. [Accessed: 04-Dec-2024].
  • Org.tr. [Online]. Available: https://dergipark.org.tr/en/pub/sdufenbed/article/221982. [Accessed: 04-Dec-2024].
  • Edu.tr. [Online]. Available: https://open.metu.edu.tr/handle/11511/58936. [Accessed: 04-Dec-2024].
  • H. Yıldız, A. Mermer, E. Ünal, ve F. Akbaş, “Türkiye Bitki Örtüsünün NDVI Verileri ile Zamansal ve Mekansal Analizi”, Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, c. 21, sy. 2, ss. 50–56, 2012.
  • I. D. Stewart and G. Mills, The Urban Heat Island. Elsevier, 2021.
  • M. N. Rahman, M. R. H. Rony, F. A. Jannat, S. C. Pal, M. S. Islam, E. Alam, and A. R. M. T. Islam, "Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools," Climate, vol.10, no.1, p.3, 2022.
  • T. Şenyapılı, Baraka’dan Gecekonduya. İstanbul: İletişim Yayınları, 2004.
  • L. Hao, G. Sun, X. Huang, R. Tang, K. Jin, Y. Lai, D. Chen, Y. Zhang, D. Zhou, Z.-L. Yang, L. Wang, G. Dong, and W. Li, "Urbanization alters atmospheric dryness through land evapotranspiration," npj Climate and Atmospheric Science, vol. 6, Art. no. 149, Sep. 2023. [Online]. Available: https://doi.org/10.1038/s41612-023-00429-x.
There are 42 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Büşra Hilal Kutlu Aydın 0000-0002-5771-8924

Burcu Ozuduru 0000-0002-8315-2303

Publication Date March 26, 2025
Submission Date December 4, 2024
Acceptance Date March 7, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE B. H. Kutlu Aydın and B. Ozuduru, “Urban Heat Island Effect of Large-Scale Residential Areas: A Spatiotemporal Analysis of Etimesgut District in Ankara”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 435–463, 2025, doi: 10.17798/bitlisfen.1596470.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS