Research Article
BibTex RIS Cite

İHA Uygulamaları için Lityum-İyon Pil Sistemlerinin Performansı ve Termal Yönetimi: 1S1P, 2S2P, 2S1P ve 3S1P Konfigürasyonlarının Karşılaştırmalı Bir Çalışması

Year 2025, Volume: 14 Issue: 3, 1362 - 1384, 30.09.2025
https://doi.org/10.17798/bitlisfen.1606366

Abstract

Bu çalışma, 1S1P, 2S1P, 2S2P ve 3S1P yapılandırmalarını karşılaştırarak İHA'lar için lityum iyon pil sistemlerinin performansını ve termal davranışını araştırır. Bu kurulumlar arasında voltaj kararlılığını, enerji verimliliğini ve termal yönetimi değerlendirir. Fiziksel baraları ortadan kaldıran yenilikçi bir sanal pil bağlantı teknolojisi tanıtılır ve ağırlık azaltma ve termal iletkenlik kayıplarını ele alır. Bu yöntem tasarım esnekliğini artırır, enerji verimliliğini iyileştirir ve sıcak noktaları en aza indirerek sistemleri daha hafif ve daha kompakt hale getirir.

Deneysel sonuçlar ve simülasyonlar, 1S1P gibi düşük kapasiteli sistemlerin yüksek deşarj oranlarında hızlı voltaj düşüşleri ve yoğun ısınma yaşadığını ortaya koymaktadır. Tersine, 2S2P ve 3S1P gibi yüksek kapasiteli yapılandırmalar üstün voltaj kararlılığı ve düzgün termal dağılım sağlayarak bunları yüksek talepli, uzun süreli uygulamalar için ideal hale getirir.

Termal yönetim, pil güvenliği ve uzun ömürlülüğü için kritik öneme sahiptir. Çalışma, eşit olmayan ısı dağılımının zararlı etkisini vurgular ve soğutma sistemleri ile faz değişim malzemelerinin entegre edilmesini önerir. Bu araştırma, lityum iyon pil tasarımını ve performansını optimize etmede sanal pil bağlantı teknolojisinin avantajlarını vurgular ve enerji yoğunluğu, termal kontrol ve operasyonel verimlilikte gelecekteki uygulamalara rehberlik eder. Gelecekteki çalışmalar, sanal bağlantıları aktif soğutma çözümleriyle birleştirmeyi araştırmalıdır.

References

  • Madani, S. S., Schaltz, E., & Kær, S. K. (2021). Applying different configurations for the thermal management of a lithium titanate oxide battery pack. Electrochem, 2(1), 50-63.
  • Rahmani, A., Dibaj, M., & Akrami, M. (2024). Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review. Batteries, 10(8), 265.
  • Strele, T. (2016). Power management for fuel cell and battery hybrid unmanned aerial vehicle applications. Arizona State University.
  • Vincent Wong, K. (2015). Research and development of drones for peace—high power high energy supply required. Journal of Energy Resources Technology, 137(3), 034702.
  • Ortiz, Y., Arévalo, P., Peña, D., & Jurado, F. (2024). Recent Advances in Thermal Management Strategies for Lithium-Ion Batteries: A Comprehensive Review. Batteries, 10(3), 83.
  • Parsons, K. K., & Mackin, T. J. (2017). Design and simulation of passive thermal management system for lithium-ion battery packs on an unmanned ground vehicle. Journal of Thermal Science and Engineering Applications, 9(1), 011012.
  • Xiao, C., Wang, B., Zhao, D., & Wang, C. (2023). Comprehensive investigation on Lithium batteries for electric and hybrid-electric unmanned aerial vehicle applications. Thermal Science and Engineering Progress, 38, 101677.
  • Bills, A., Sripad, S., Fredericks, W. L., Guttenberg, M., Charles, D., Frank, E., & Viswanathan, V. (2020). Universal battery performance and degradation model for electric aircraft. arXiv preprint arXiv:2008.01527.
  • Guibert, A. T., Bookwala, M., Cronk, A., Meng, Y. S., & Kim, H. A. (2023). Thermo-mechanical level-set topology optimization of a load carrying battery pack for electric aircraft. arXiv preprint arXiv:2307.16521.
  • Argade, S., & De, A. (2024). Optimization study of a Z-type airflow cooling system of a lithium-ion battery pack. Physics of Fluids, 36(6).
  • Lu, Z., Tu, H., Fang, H., Wang, Y., & Mou, S. (2024). Integrated Optimal Fast Charging and Active Thermal Management of Lithium-Ion Batteries in Extreme Ambient Temperatures. IEEE Transactions on Control Systems Technology.
  • Kim, G. H., Smith, K., Lee, K. J., Santhanagopalan, S., & Pesaran, A. (2011). Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. Journal of The Electrochemical Society, 158(8), A955–A969. https://doi.org/10.1149/1.3597614
  • Safari, M., & Delacourt, C. (2011). Modeling of a commercial graphite/LiFePO₄ cell. Journal of The Electrochemical Society, 158(5), A562–A571. https://doi.org/10.1149/1.3557892
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554–4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Al-Zareer, M., Dincer, I., & Rosen, M. A. (2017). Thermal management of batteries in hybrid electric vehicles: Modelling and experimental validation. Applied Thermal Engineering, 115, 1146–1154. https://doi.org/10.1016/j.applthermaleng.2016.10.061
  • Yang, X. G., Leng, Y., Zhang, G., Ge, S., & Wang, C. Y. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28–40. https://doi.org/10.1016/j.jpowsour.2017.05.110
  • Cao, Z., He, J., Lin, X., & Ouyang, M. (2021). Smart interconnection and reconfiguration strategies for next-generation modular battery packs. Energy Storage Materials, 39, 429–444.
  • Şahin, H., Kose, O., & Oktay, T. (2022). Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircraft Engineering and Aerospace Technology, 94(8), 1228-1241.
  • Kök, C., & Alkaya, A. (2020). Investigation of thermal behavior of lithium-ion batteries under different loads. European Mechanical Science, 4(3), 96-102.
  • Ossai, C. I. (2017). Optimal renewable energy generation–Approaches for managing ageing assets mechanisms. Renewable and Sustainable Energy Reviews, 72, 269-280.
  • Chen, H., Guo, H., Ye, F., & Ma, C. F. (2020). An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels. Journal of Power Sources, 472, 228456.
  • Yin, H., Ou, Z., Huang, S., & Meng, A. (2019). A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition. Energy, 189, 116316.
  • Jeng, B. S., Shiau, S. H., Liu, C. W., & Gau, C. (2011). Fabrication of high performance SWNT film FETs in unipolar p-type, n-type or ambipolar characteristics. Journal of The Electrochemical Society, 158(12), H1297.
  • Song, K., Li, F., Hu, X., He, L., Niu, W., Lu, S., & Zhang, T. (2018). Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm. Journal of Power Sources, 389, 230-239.
  • Aydın, S., & Uzun, M. The Effectiveness of Advanced Cooling Solutions in Managing the Thermal Performance of Lithium-Ion Batteries: A Numerical Study. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 16(2), 397-410.
  • Uzun, M. (2025). Thermal and electrical analysis of 26650 li-ion batteries in series connection using the NTGK model and virtual simulations. European Mechanical Science, 9(1), 46-58.
  • Keyinci, S., Ilinčić, P., Tosun, E., Uzun, M., Yakaryilmaz, A. C., & Ozcanli, M. (2025). Design and performance analysis of a curved channel liquid cooling system for battery thermal management. Thermal Science and Engineering Progress, 103690.

Comparative Evaluation of Thermal and Voltage Behavior of Multi-Topology Li-Ion Battery Packs For UAVs Using Virtual Interconnection Method

Year 2025, Volume: 14 Issue: 3, 1362 - 1384, 30.09.2025
https://doi.org/10.17798/bitlisfen.1606366

Abstract

This study comparatively investigates the electrical and thermal performances of four different lithium-ion battery configurations (1S1P, 2S1P, 2S2P, 3S1P) for unmanned aerial vehicles (UAVs) at 0.5C-3C discharge rates. The main innovations of the study are as follows: (1) A new virtual connection method is developed that eliminates the need for physical busbars, which reduces the battery pack weight by ~15% while increasing the thermal uniformity by up to 20%. This method, validated by NTGK electrochemical-thermal model simulations and experimental studies, provides a significant advantage in the design of compact and lightweight energy systems for UAVs. (2) Parallel topologies (especially 2S2P) are shown to perform better than series-weighted configurations - voltage drop is limited to <5% at 3C discharge rate and thermal gradients are significantly reduced (ΔT < 2.2K, 4.0K for 1S1P). (3) The findings provide quantitative guidelines for UAV designers: 2S2P configuration in 3C increases the operation time by 25% compared to 2S1P, while 3S1P configuration exhibits superior voltage stability with a drop from 12.11V to 9.89V in 1080 seconds. These results clearly demonstrate that parallel configurations and hybrid cooling strategies should be adopted in high-performance UAV applications and provide guidance for future battery pack designs. The study provides significant contributions to the development of optimized battery systems, especially for long-range and high-payload UAVs.

Ethical Statement

The study is complied with research and publication ethics.

References

  • Madani, S. S., Schaltz, E., & Kær, S. K. (2021). Applying different configurations for the thermal management of a lithium titanate oxide battery pack. Electrochem, 2(1), 50-63.
  • Rahmani, A., Dibaj, M., & Akrami, M. (2024). Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review. Batteries, 10(8), 265.
  • Strele, T. (2016). Power management for fuel cell and battery hybrid unmanned aerial vehicle applications. Arizona State University.
  • Vincent Wong, K. (2015). Research and development of drones for peace—high power high energy supply required. Journal of Energy Resources Technology, 137(3), 034702.
  • Ortiz, Y., Arévalo, P., Peña, D., & Jurado, F. (2024). Recent Advances in Thermal Management Strategies for Lithium-Ion Batteries: A Comprehensive Review. Batteries, 10(3), 83.
  • Parsons, K. K., & Mackin, T. J. (2017). Design and simulation of passive thermal management system for lithium-ion battery packs on an unmanned ground vehicle. Journal of Thermal Science and Engineering Applications, 9(1), 011012.
  • Xiao, C., Wang, B., Zhao, D., & Wang, C. (2023). Comprehensive investigation on Lithium batteries for electric and hybrid-electric unmanned aerial vehicle applications. Thermal Science and Engineering Progress, 38, 101677.
  • Bills, A., Sripad, S., Fredericks, W. L., Guttenberg, M., Charles, D., Frank, E., & Viswanathan, V. (2020). Universal battery performance and degradation model for electric aircraft. arXiv preprint arXiv:2008.01527.
  • Guibert, A. T., Bookwala, M., Cronk, A., Meng, Y. S., & Kim, H. A. (2023). Thermo-mechanical level-set topology optimization of a load carrying battery pack for electric aircraft. arXiv preprint arXiv:2307.16521.
  • Argade, S., & De, A. (2024). Optimization study of a Z-type airflow cooling system of a lithium-ion battery pack. Physics of Fluids, 36(6).
  • Lu, Z., Tu, H., Fang, H., Wang, Y., & Mou, S. (2024). Integrated Optimal Fast Charging and Active Thermal Management of Lithium-Ion Batteries in Extreme Ambient Temperatures. IEEE Transactions on Control Systems Technology.
  • Kim, G. H., Smith, K., Lee, K. J., Santhanagopalan, S., & Pesaran, A. (2011). Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. Journal of The Electrochemical Society, 158(8), A955–A969. https://doi.org/10.1149/1.3597614
  • Safari, M., & Delacourt, C. (2011). Modeling of a commercial graphite/LiFePO₄ cell. Journal of The Electrochemical Society, 158(5), A562–A571. https://doi.org/10.1149/1.3557892
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554–4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Al-Zareer, M., Dincer, I., & Rosen, M. A. (2017). Thermal management of batteries in hybrid electric vehicles: Modelling and experimental validation. Applied Thermal Engineering, 115, 1146–1154. https://doi.org/10.1016/j.applthermaleng.2016.10.061
  • Yang, X. G., Leng, Y., Zhang, G., Ge, S., & Wang, C. Y. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28–40. https://doi.org/10.1016/j.jpowsour.2017.05.110
  • Cao, Z., He, J., Lin, X., & Ouyang, M. (2021). Smart interconnection and reconfiguration strategies for next-generation modular battery packs. Energy Storage Materials, 39, 429–444.
  • Şahin, H., Kose, O., & Oktay, T. (2022). Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircraft Engineering and Aerospace Technology, 94(8), 1228-1241.
  • Kök, C., & Alkaya, A. (2020). Investigation of thermal behavior of lithium-ion batteries under different loads. European Mechanical Science, 4(3), 96-102.
  • Ossai, C. I. (2017). Optimal renewable energy generation–Approaches for managing ageing assets mechanisms. Renewable and Sustainable Energy Reviews, 72, 269-280.
  • Chen, H., Guo, H., Ye, F., & Ma, C. F. (2020). An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels. Journal of Power Sources, 472, 228456.
  • Yin, H., Ou, Z., Huang, S., & Meng, A. (2019). A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition. Energy, 189, 116316.
  • Jeng, B. S., Shiau, S. H., Liu, C. W., & Gau, C. (2011). Fabrication of high performance SWNT film FETs in unipolar p-type, n-type or ambipolar characteristics. Journal of The Electrochemical Society, 158(12), H1297.
  • Song, K., Li, F., Hu, X., He, L., Niu, W., Lu, S., & Zhang, T. (2018). Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm. Journal of Power Sources, 389, 230-239.
  • Aydın, S., & Uzun, M. The Effectiveness of Advanced Cooling Solutions in Managing the Thermal Performance of Lithium-Ion Batteries: A Numerical Study. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 16(2), 397-410.
  • Uzun, M. (2025). Thermal and electrical analysis of 26650 li-ion batteries in series connection using the NTGK model and virtual simulations. European Mechanical Science, 9(1), 46-58.
  • Keyinci, S., Ilinčić, P., Tosun, E., Uzun, M., Yakaryilmaz, A. C., & Ozcanli, M. (2025). Design and performance analysis of a curved channel liquid cooling system for battery thermal management. Thermal Science and Engineering Progress, 103690.
There are 27 citations in total.

Details

Primary Language English
Subjects Energy, Avionics
Journal Section Research Article
Authors

Metin Uzun 0000-0002-0744-3491

Sezer Çoban 0000-0001-6750-5001

Abdullah Kocamer 0000-0001-8948-6390

Sinan Keyinci 0000-0003-2948-3846

Publication Date September 30, 2025
Submission Date December 23, 2024
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE M. Uzun, S. Çoban, A. Kocamer, and S. Keyinci, “Comparative Evaluation of Thermal and Voltage Behavior of Multi-Topology Li-Ion Battery Packs For UAVs Using Virtual Interconnection Method”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1362–1384, 2025, doi: 10.17798/bitlisfen.1606366.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS