Research Article
BibTex RIS Cite

Comparative Performance Analysis of Permanent Magnet and Claw-Pole Alternators in Internal Combustion Engines

Year 2025, Volume: 14 Issue: 3, 1636 - 1654, 30.09.2025
https://doi.org/10.17798/bitlisfen.1688568

Abstract

In this study, a comprehensive experimental comparison of Permanent Magnet Alternators (PMA) and Claw-Pole Alternators (CPA) used in internal combustion engines (ICE) was conducted under three different operating conditions: no-load, loaded, and charging scenarios. Key performance parameters including voltage, current, engine speed, temperature variation, and fuel consumption were measured and analyzed in detail using a custom-built test setup and data acquisition system. The results show that while PMAs provide higher efficiency and power output under load, they are prone to higher operating temperatures and efficiency losses under no-load and charging conditions compared to CPAs. CPAs, on the other hand, demonstrated stable performance and higher current generation capacity, which is crucial for meeting increasing electrical demands in modern vehicles. The findings underline the importance of predicting alternator performance for optimizing fuel economy, enhancing electrical system reliability, and supporting the development of next-generation automotive alternators. Design recommendations are also presented to improve the efficiency and thermal management of PMAs in practical applications.

Ethical Statement

The study is complied with research and publication ethics.

References

  • D. J. Perreault and V. Caliskan, “Automotive power generation and control,” IEEE Trans. Power Electron., vol. 19, no. 3, 2004, doi: 10.1109/TPEL.2004.826432.
  • M. Naidu, “A high-efficiency high-power-generation system for automobiles,” IEEE Trans. Ind. Appl., vol. 33, no. 6, 1997, doi: 10.1109/28.649966.
  • W. Cai, “Comparison and review of electric machines for integrated starter alternator applications,” in Conf. Rec. IAS Annu. Meeting (IEEE Ind. Appl. Soc.), 2004. doi: 10.1109/ias.2004.1348437.
  • K. G. Bürger, “Alternators,” in Automotive Electric/Electronic Systems, 2nd ed., A. Beer and A. Cypra, Eds., Stuttgart, Germany: Robert Bosch GmbH, 1995, pp. 304–345.
  • B. Singh, B. P. Singh, and S. Dwivedi, “A state of art on different configurations of permanent magnet brushless machines,” J. Inst. Eng. Electr. Eng. Div., vol. 87, no. JUNE, 2006.
  • R. Dutta and M. F. Rahman, “Design and analysis of an interior permanent magnet (IPM) machine with very wide constant power operation range,” IEEE Trans. Energy Convers., vol. 23, no. 1, 2008, doi: 10.1109/TEC.2007.905061.
  • J. Huang, Z. Song, S. Li, and J. Ruan, “Claw-pole magnetic levitation torque motor for 2D valve with automatic neutral adjustment,” IET Electr. Power Appl., vol. 17, no. 10, 2023, doi: 10.1049/elp2.12342.
  • S. Wu et al., “Influence of stator teeth deformation on the electromagnetic force and acoustic noise of claw pole alternators,” Electr. Eng., vol. 105, no. 5, 2023, doi: 10.1007/s00202-023-01919-y.
  • S. Wu, X. Yan, Z. Chen, Y. Zhang, and X. Feng, “New rotor topologies for electromagnetic forces and acoustic noise reduction of claw pole alternators,” J. Electr. Eng. Technol., vol. 18, no. 5, 2023, doi: 10.1007/s42835-023-01559-z.
  • F. R. Ismagilov, V. E. Vavilov, O. A. Yushkova, E. A. Pronin, and A. A. Zherebtsov, “Characteristics of the starter–alternator with incorporated permanent magnets made of a dual-phase magnetic material rotor,” J. Mach. Manuf. Reliab., vol. 52, no. 8, 2023, doi: 10.1134/S1052618823080071.
  • Safdar, S. Sultan, H. A. Raza, M. Umer, and M. Ali, “Empirical analysis of turbine and generator efficiency of a pico hydro system,” Sustain. Energy Technol. Assessments, vol. 37, 2020, doi: 10.1016/j.seta.2019.100605.
  • N. Pamuk, “Investigation of interior permanent magnet synchronous (IPMS) machine applications in electrical vehicle engine industry,” TEM J., vol. 12, no. 4, 2023, doi: 10.18421/TEM124-04.
  • C. H. Cheng and S. Dhanasekaran, “Design of a slot-spaced permanent magnet linear alternator based on numerical analysis,” Energies, vol. 15, no. 13, 2022, doi: 10.3390/en15134523.
  • C. H. Cheng and S. Dhanasekaran, “Cogging force reduction and profile smoothening methods for a slot-spaced permanent magnet linear alternator,” Energies, vol. 16, no. 15, 2023, doi: 10.3390/en16155827.
  • S. Wu, S. Wu, J. Zhou, S. Cui, and X. Zhang, “Permanent magnet compensated pulsed alternator for driving air-based loads,” IEEE Trans. Transp. Electrif., vol. 6, no. 4, 2020, doi: 10.1109/TTE.2020.2988181.
  • O. Otuoze et al., “Field loss calculation of a wind-powered axial flux alternator by analytical equations,” Eng. Reports, vol. 3, no. 9, 2021, doi: 10.1002/eng2.12391.
  • Y. Wan, Q. Li, J. Guo, and S. Cui, “Thermal analysis of a Gramme-ring-winding high-speed permanent-magnet motor for pulsed alternator using CFD,” IET Electr. Power Appl., vol. 14, no. 11, 2020, doi: 10.1049/iet-epa.2020.0086.
  • J. Cekani, F. G. Capponi, G. De Donato, and F. Caricchi, “Mechanical flux weakening methods for the achievement of a very wide constant power speed range in automotive applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 3, 2022, doi: 10.1109/JESTPE.2021.3058198.
  • Y. Cheng, G. Guo, and S. Hu, “Design and performance research of a novel iron-core permanent magnet compensated pulsed alternator with segmental squirrel-cage,” IEEE Trans. Ind. Electron., vol. 71, no. 2, 2024, doi: 10.1109/TIE.2023.3253922.
  • B. Thangaraj and R. Subramanian, “A comparative 3-D transient electromagnetic, thermal and powertrain study of single rotor BLPMSM and dual rotor machine for electric propelled vehicle,” Electr. Eng., vol. 103, no. 6, 2021, doi: 10.1007/s00202-021-01257-x.
  • S. Kirubadevi and S. Sutha, “PMSG based wind energy conversion system using intelligent MPPT with HGRSC converter,” Intell. Autom. Soft Comput., vol. 34, no. 2, 2022, doi: 10.32604/iasc.2022.025395.
  • H. Moradi CheshmehBeigi, “Slotless tubular PM generator with dual quasi-Halbach magnetized PM array: Analytical and numerical magnetic field analysis,” Int. J. Numer. Model. Electron. Networks, Devices Fields, vol. 33, no. 2, 2020, doi: 10.1002/jnm.2569.
  • D. Karaoglan, D. G. Ocaktan, A. Oral, and D. Perin, “Design optimization of magnetic flux distribution for PMG by using response surface methodology,” IEEE Trans. Magn., vol. 56, no. 6, 2020, doi: 10.1109/TMAG.2020.2986187.
  • R. B. Godoy, M. A. G. de Brito, R. C. Garcia, M. L. M. Kimpara, and J. O. P. Pinto, “Integrated starter alternator PMSM drive for hybrid vehicles,” J. Control. Autom. Electr. Syst., vol. 32, no. 1, 2021, doi: 10.1007/s40313-020-00665-x.
  • M. C. Kulan, N. J. Baker, and S. Turvey, “Manufacturing challenges of a modular transverse flux alternator for aerospace,” Energies, vol. 13, no. 6, 2020, doi: 10.3390/en13164275.
  • G. Vijayasree, V. P. Mini, and S. UshaKumari, “Investigation of magnetic effect in high-speed homopolar inductor alternator,” J. Electr. Eng. Technol., vol. 19, no. 5, 2024, doi: 10.1007/s42835-023-01774-8.
  • M. Murshed, M. Chamana, K. E. K. Schmitt, R. Bhatta, O. Adeyanju, and S. Bayne, “Design and performance analysis of a grid-connected distributed wind turbine,” Energies, vol. 16, no. 15, 2023, doi: 10.3390/en16155778.
  • M. C. Kulan, N. J. Baker, and S. Turvey, “Impact of manufacturing and material uncertainties in performance of a transverse flux machine for aerospace,” Energies, vol. 15, no. 20, 2022, doi: 10.3390/en15207607.
  • L. Jing, G. Liu, X. Guo, and S. Su, “Research on the cloud computing fuzzy proportion integration differentiation control strategy for permanent-magnet homopolar motor with salient pole solid rotor used on new-energy vehicle,” Sustain. Energy Technol. Assessments, vol. 52, 2022, doi: 10.1016/j.seta.2022.101969.
  • R. Mirzahosseini, A. Darabi, and M. Assili, “Analytical and experimental analysis of back EMF waveform of a TORUS-type non-slotted axial flux permanent magnet synchronous machine with shifted rotor,” Meas. J. Int. Meas. Confed., vol. 156, 2020, doi: 10.1016/j.measurement.2020.107620.
  • J. Yang et al., “Design and analysis of a novel permanent magnet homopolar inductor machine with mechanical flux modulator for flywheel energy storage system,” IEEE Trans. Ind. Electron., vol. 69, no. 8, 2022, doi: 10.1109/TIE.2021.3104583.
  • Y. Cao and C. Liu, “Design and analysis of a dual-direction hybrid excitation generator,” IEEJ Trans. Electr. Electron. Eng., vol. 17, no. 11, 2022, doi: 10.1002/tee.23674.
  • M. Zhang, A. Bodrov, R. Shuttleworth, and M. F. Iacchetti, “Current-modulation-based on-line resonance tuning strategy for linear generator drives,” IEEE Trans. Ind. Electron., vol. 68, no. 4, 2021, doi: 10.1109/TIE.2020.2978697.
  • Y. Zhang, B. Yang, D. Ji, X. Hou, B. Zhao, and T. Zhang, “Integrated simulation and performance analysis of confined piston linear generator (CPLG),” Energy, vol. 282, 2023, doi: 10.1016/j.energy.2023.128814.
  • B. C. Kim and D. W. Kang, “A study on the novel design to improve efficiency of wound field synchronous machine,” IEEE Trans. Magn., vol. 57, no. 2, 2021, doi: 10.1109/TMAG.2020.3013260.
  • Agarala, S. S. Bhat, D. Zychma, and P. Sowa, “A novel approach to using dual-field excited synchronous generators as wind power generators,” Energies, vol. 17, no. 2, 2024, doi: 10.3390/en17020456.
  • Y. Chen, Y. Wang, W. Li, and C. Qin, “Modeling and fault-tolerant control method of multiphase permanent magnet pulsed alternator,” IEEE Trans. Plasma Sci., vol. 52, no. 7, pp. 2917–2925, Jul. 2024, doi: 10.1109/TPS.2024.3443342.
  • Amany R. Nasr, Ebrahim A. Badran, and Ibrahim I. I. Mansy, “A novel cooling technique to improve the thermal characteristics of a permanent magnet generator using an earth–air heat exchanger,” J. Electr. Comput. Eng., vol. 2025, Art. ID 9987298, 20 pages, doi: 10.1155/jece/9987298.
  • C. Z. Liaw, W. L. Soong, and N. Ertugrul, “Low-speed output power improvement of an interior PM automotive alternator,” in Conf. Rec. IAS Annu. Meeting (IEEE Ind. Appl. Soc.), 2006. doi: 10.1109/IAS.2006.256516.
There are 39 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Mechanical Engineering (Other), Internal Combustion Engines, Vehicle Technique and Dynamics
Journal Section Research Article
Authors

Metin Kaynaklı 0000-0001-8372-1345

Ahmet Albayrak 0000-0002-2166-1102

Raif Bayır 0000-0003-3155-8771

Publication Date September 30, 2025
Submission Date May 1, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE M. Kaynaklı, A. Albayrak, and R. Bayır, “Comparative Performance Analysis of Permanent Magnet and Claw-Pole Alternators in Internal Combustion Engines”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1636–1654, 2025, doi: 10.17798/bitlisfen.1688568.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS