Araştırma Makalesi
BibTex RIS Kaynak Göster

Predicting stopping power and range value for high energy electrons in the muscle and skin tissues

Yıl 2018, Cilt: 1 Sayı: 2, 35 - 40, 01.04.2018

Öz

High-energy electron beams are used for especially for radiotherapy of localized superficial tumors. Knowing as accurately as the stopping power and range values is important in electron beam therapy. Electrons beams are preferred in surface treatments due to their characteristic feature. In this work, we have calculated stopping power and range values for incident electrons ranging from 0.1 to 900 MeV range on muscle and skin by using Thomas-Fermi electron density. The obtained data is important in terms of creating a database for such studies.

Kaynakça

  • Akar A, Gümüş H. 2005. Electron stopping power in biological compounds for low and intermediate energies with generalized oscillator strength (GOS) model. Radiat Phys Chem, 73: 196-203.
  • Amsler C, Doser M, Antonelli M. et al.,. (Particle Data Group). 2008. Review of particle physics (in Experimental Methods and Colliders). PhysLett B, 667:1–1340.
  • Bagal`a P, Venanzio CD, Falco MD, Guerra AS, Marinelli M, Milani E, Pimpinella M, Pompili F, Prestopino G, Santoni R, Tonnetti A, Verona C, Verona-Rinati G. 2013. Radiotherapy electron beams collimated by small tubular applicators: characterization by silicon and diamond diodes. Phys Med Biol, 58: 8121–8133.
  • Bragg WH, Kleeman R. 1905. On the alpha particles of radium and their loss of range in passing through various atoms and molecules. Philos Mag, 10: 318–340.
  • Bethe HA. 1930. Zur Thorie des Durchgags Cehneller Karpuskularstrahlendurch Materie. Ann Physik Ann Phys (Leipzig), 5: 325-400.
  • Bloch F. 1933. Zur Bremsungrasch Bewecter Teikhen Beim Durchangangdurch Materie. Ann Phys (Leipz.), 16: 285.
  • Bohr N. 1940. Scattering and stopping of fission fragments. Phys Rev, 58: 654–655.
  • Bohr N. 1941. Velocity–range relation for fission fragments. Phys Rev, 59:270–275.
  • Cleland MR. 2009. Industrial applications of electron accelerators, pp.383-416. Published version from, CERN cds.cern.ch/record/1005393/files/p383.pdf.
  • ESTAR 2003. Stopping power and range tables for electron. Data available from /http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
  • Gallo S, Iacoviello G, Bartolotta A, Dondi D, Panzeca S, Marrale M. 2017. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams. Nucl. Instrum. Methods B, 407:110–117.
  • Gümüş H. 2008. New stopping power formula for intermediate energy electrons. Appl Rad Isot, 66: 1886-1890.
  • Hogstrom KR, Almond PR. 2006. Review of electron beam therapy physics. Phys Med Biol, 51: 455–489.
  • ICRU 1989. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. International Commission on Radiation Units and Measurements, Bethesda.
  • Jablonski A, Tanuma S, Powell CJ. 2006. New universal expression for the electron stopping power for energies between 200 eV and 30 keV. J Surf Interface Anal, 38: 76-83.
  • Khan FM. 2003. The Physics of Radiation Therapy, The 3rd Editon, Minnesota: Williams & Wilkins.
  • Ravichandran R, Binukumar JP, Amri I, Davis CA. 2016. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J Appl Clinical Med Phys, 17(2): 291-303.
  • Rohrlich F, Carlson BC. 1954. Positron-electron differences in energy loss and multiple scattering. Phys Rev, 93: 38-44.
  • Sugiyama H. 1981. Electronic stopping power formula for intermediate energies. Radiat Eff, 56: 205-209.
  • Sugiyama H. 1985. Stopping power formula for intermediate energy electrons. Phys Med Biol, 30: 331-335.
  • Thomas LH. 1927. The calculation of atomic fields. Cambridge Philos Soc, 23: 542-548.
  • Tufan MÇ, Gümüş H. 2011. A Study on the calculation of stopping power and CSDA Range for incident positrons. J Nucl Mater, 412: 308-314.
  • Tufan MÇ, Namdar T, Gümüş H. 2013. Stopping power and CSDA range calculations for incident electrons and positrons in breast and brain tissues. Radiat Environ Biophys, 52: 245–253.
  • Tsai YS. 1974. Pair production and bremsstrahlung of charged leptons. Rev Mod Phys, 46: 815–851.
  • Venanzio CD, Marinelli M, Milani E, Prestopino G, Verona C, Verona-Rinati G. 2013. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry. Med Phys, 40(2):021712.
  • Yarlagadda BS, Robinson JE, Brandt W. 1978. Effective-charge theory and the electronic stopping power of solids. Phys Rev B, 17: 3473-3483.
Yıl 2018, Cilt: 1 Sayı: 2, 35 - 40, 01.04.2018

Öz

Kaynakça

  • Akar A, Gümüş H. 2005. Electron stopping power in biological compounds for low and intermediate energies with generalized oscillator strength (GOS) model. Radiat Phys Chem, 73: 196-203.
  • Amsler C, Doser M, Antonelli M. et al.,. (Particle Data Group). 2008. Review of particle physics (in Experimental Methods and Colliders). PhysLett B, 667:1–1340.
  • Bagal`a P, Venanzio CD, Falco MD, Guerra AS, Marinelli M, Milani E, Pimpinella M, Pompili F, Prestopino G, Santoni R, Tonnetti A, Verona C, Verona-Rinati G. 2013. Radiotherapy electron beams collimated by small tubular applicators: characterization by silicon and diamond diodes. Phys Med Biol, 58: 8121–8133.
  • Bragg WH, Kleeman R. 1905. On the alpha particles of radium and their loss of range in passing through various atoms and molecules. Philos Mag, 10: 318–340.
  • Bethe HA. 1930. Zur Thorie des Durchgags Cehneller Karpuskularstrahlendurch Materie. Ann Physik Ann Phys (Leipzig), 5: 325-400.
  • Bloch F. 1933. Zur Bremsungrasch Bewecter Teikhen Beim Durchangangdurch Materie. Ann Phys (Leipz.), 16: 285.
  • Bohr N. 1940. Scattering and stopping of fission fragments. Phys Rev, 58: 654–655.
  • Bohr N. 1941. Velocity–range relation for fission fragments. Phys Rev, 59:270–275.
  • Cleland MR. 2009. Industrial applications of electron accelerators, pp.383-416. Published version from, CERN cds.cern.ch/record/1005393/files/p383.pdf.
  • ESTAR 2003. Stopping power and range tables for electron. Data available from /http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
  • Gallo S, Iacoviello G, Bartolotta A, Dondi D, Panzeca S, Marrale M. 2017. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams. Nucl. Instrum. Methods B, 407:110–117.
  • Gümüş H. 2008. New stopping power formula for intermediate energy electrons. Appl Rad Isot, 66: 1886-1890.
  • Hogstrom KR, Almond PR. 2006. Review of electron beam therapy physics. Phys Med Biol, 51: 455–489.
  • ICRU 1989. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. International Commission on Radiation Units and Measurements, Bethesda.
  • Jablonski A, Tanuma S, Powell CJ. 2006. New universal expression for the electron stopping power for energies between 200 eV and 30 keV. J Surf Interface Anal, 38: 76-83.
  • Khan FM. 2003. The Physics of Radiation Therapy, The 3rd Editon, Minnesota: Williams & Wilkins.
  • Ravichandran R, Binukumar JP, Amri I, Davis CA. 2016. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J Appl Clinical Med Phys, 17(2): 291-303.
  • Rohrlich F, Carlson BC. 1954. Positron-electron differences in energy loss and multiple scattering. Phys Rev, 93: 38-44.
  • Sugiyama H. 1981. Electronic stopping power formula for intermediate energies. Radiat Eff, 56: 205-209.
  • Sugiyama H. 1985. Stopping power formula for intermediate energy electrons. Phys Med Biol, 30: 331-335.
  • Thomas LH. 1927. The calculation of atomic fields. Cambridge Philos Soc, 23: 542-548.
  • Tufan MÇ, Gümüş H. 2011. A Study on the calculation of stopping power and CSDA Range for incident positrons. J Nucl Mater, 412: 308-314.
  • Tufan MÇ, Namdar T, Gümüş H. 2013. Stopping power and CSDA range calculations for incident electrons and positrons in breast and brain tissues. Radiat Environ Biophys, 52: 245–253.
  • Tsai YS. 1974. Pair production and bremsstrahlung of charged leptons. Rev Mod Phys, 46: 815–851.
  • Venanzio CD, Marinelli M, Milani E, Prestopino G, Verona C, Verona-Rinati G. 2013. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry. Med Phys, 40(2):021712.
  • Yarlagadda BS, Robinson JE, Brandt W. 1978. Effective-charge theory and the electronic stopping power of solids. Phys Rev B, 17: 3473-3483.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Zeynep Yüksel Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2018
Gönderilme Tarihi 9 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Yüksel, Z. (2018). Predicting stopping power and range value for high energy electrons in the muscle and skin tissues. Black Sea Journal of Engineering and Science, 1(2), 35-40.
AMA Yüksel Z. Predicting stopping power and range value for high energy electrons in the muscle and skin tissues. BSJ Eng. Sci. Nisan 2018;1(2):35-40.
Chicago Yüksel, Zeynep. “Predicting Stopping Power and Range Value for High Energy Electrons in the Muscle and Skin Tissues”. Black Sea Journal of Engineering and Science 1, sy. 2 (Nisan 2018): 35-40.
EndNote Yüksel Z (01 Nisan 2018) Predicting stopping power and range value for high energy electrons in the muscle and skin tissues. Black Sea Journal of Engineering and Science 1 2 35–40.
IEEE Z. Yüksel, “Predicting stopping power and range value for high energy electrons in the muscle and skin tissues”, BSJ Eng. Sci., c. 1, sy. 2, ss. 35–40, 2018.
ISNAD Yüksel, Zeynep. “Predicting Stopping Power and Range Value for High Energy Electrons in the Muscle and Skin Tissues”. Black Sea Journal of Engineering and Science 1/2 (Nisan 2018), 35-40.
JAMA Yüksel Z. Predicting stopping power and range value for high energy electrons in the muscle and skin tissues. BSJ Eng. Sci. 2018;1:35–40.
MLA Yüksel, Zeynep. “Predicting Stopping Power and Range Value for High Energy Electrons in the Muscle and Skin Tissues”. Black Sea Journal of Engineering and Science, c. 1, sy. 2, 2018, ss. 35-40.
Vancouver Yüksel Z. Predicting stopping power and range value for high energy electrons in the muscle and skin tissues. BSJ Eng. Sci. 2018;1(2):35-40.

                                                24890