Research Article
BibTex RIS Cite

Ergenler İçin Kısa Akıllı Telefon Stres Ölçeğinin Türkçeye Uyarlanması ve Geçerlilik Çalışması

Year 2025, Volume: 14 Issue: 3, 845 - 857, 31.07.2025
https://doi.org/10.14686/buefad.1670321

Abstract

Bu çalışma, Huang ve ark. (2022) tarafından geliştirilen Kısa Akıllı Telefon Stres Ölçeği’nin (SSSS) Türkçeye uyarlanmasını ve ergenler arasında psikometrik özelliklerinin incelenmesini amaçlamaktadır. Ölçek dörtlü Likert tipindedir ve dokuz maddeden oluşmaktadır. Günümüzde gençler arasında akıllı telefon kullanımının artmasıyla birlikte dijital etkileşim kaynaklı psikolojik stresi değerlendirebilecek kültürel olarak geçerli ölçme araçlarına ihtiyaç duyulmaktadır. Araştırmanın örneklemi, yaşları 14 ile 17 arasında değişen 297 ortaokul ve lise öğrencisinden oluşmaktadır. Katılımcılara SSSS Türkçe formunun yanı sıra depresyon ve öznel iyi oluş ölçekleri de uygulanmıştır. Doğrulayıcı faktör analizi sonuçları, ölçeğin özgün tek faktörlü yapısını desteklemiş ve model uyum indeksleri kabul edilebilir düzeyde bulunmuştur ( χ²(25) = 53.77, χ²/df = 2.15, p < .001, GFI = .98, SRMR = .07, RMSEA = .06, AGFI = .93, and CFI = .95). Maddelerin faktör yükleri .34 ile .61 arasında değişmiş ve tamamı istatistiksel olarak anlamlı bulunmuştur. Ölçeğin iç tutarlılığı yeterli düzeyde olup Cronbach alfa katsayısı .72 olarak hesaplanmıştır. Ölçeğin Türkçe formu puanlarının depresyonla pozitif ve öznel iyi oluşla negatif yönde ilişkili olması uyum geçerliği kanıtları olarak değerlendirilmiştir. Elde edilen bulgular, SSSS’nin Türkçe versiyonunun ergenlerde akıllı telefon kaynaklı stresi ölçmek için geçerli ve güvenilir bir araç olduğunu göstermektedir. Ölçeğin kısa ve anlaşılır yapısı, ölçeği okul temelli ruh sağlığı taramaları, psikolojik araştırmalar ve dijital iyi oluş müdahaleleri için kullanışlı hale getirmektedir. Bu çalışma, dijital stres literatürüne kültürel açıdan uyarlanmış yeni bir ölçme aracı kazandırarak önemli bir katkı sunma potansiyeli taşımaktadır.

References

  • Abu Khait, A., Menger, A., Al-Atiyyat, N., Hamaideh, S. H., Al-Modallal, H., & Rayapureddy, H. (2024). The Association Between Proneness to Smartphone Addiction and Social Anxiety Among School Students and the Mediating Role of Social Support: A Call to Advance Jordanian Adolescents’ Mental Health. Journal of the American Psychiatric Nurses Association, 10783903241261047. https://doi.org/10.1177/10783903241261047
  • Andrade, A. L. M., Scatena, A., de Oliveira Pinheiro, B., de Oliveira, W. A., Lopes, F. M., & De Micheli, D. (2022). Psychometric properties of the smartphone addiction inventory (SPAI-BR) in Brazilian adolescents. International Journal of Mental Health and Addiction, 20(5), 2690-2705. https://doi.org/10.1007/s11469-021-00542-x
  • Avci, D., Gündoğdu, N. A., Dönmez, R. H., & Avci, F. E. (2023). Students as teachers: effect of the peer education model on reducing smartphone addiction in adolescents. Health education research, 38(2), 107-118. https://doi.org/10.1093/her/cyac042
  • Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach's alpha. Bmj, 314(7080), 572. https://doi.org/10.1136/bmj.314.7080.572
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
  • Byrne, B. M. (2010). Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming (B. M. Byrne, Ed. 2nd ed.). Routledge. https://doi.org/10.4324/9780203805534
  • Byrne, B. M. (2016). Adaptation of assessment scales in cross-national research: Issues, guidelines, and caveats. International Perspectives in Psychology, 5(1), 51-65. https://doi.org/10.1037/ipp0000042
  • Ching, S. M., Lee, K. W., Yee, A., Sivaratnam, D., Hoo, F. K., WA, W. S., Mohamed, M. H., Tan, K. A., Danaee, M., & Ali, N. (2020). The Malay version of smartphone addiction scale: Development, factor structure and validation of a short form for Malaysian adolescents. The Medical Journal of Malaysia, 75(5), 561-567.
  • Clark, C. A., & Harris, K. M. (2021). Smartphone connectivity stress across generations: Validation of a brief scale for adolescents and adults. Computers in Human Behavior Reports, 3, 100095. https://doi.org/10.1016/j.chbr.2021.100095
  • Commission, I. T. (2017). The ITC Guidelines for Translating and Adapting Tests. I. T. Commission. http://www.intestcom.org/
  • Comrey, A., & Lee, H. (1992). Interpretation and application of factor analytic results. Comrey AL, Lee HB. A first course in factor analysis, 2, 1992.
  • Dogra, N., & Sharma, S. (2024). Studying Alienation and Depression as a Predictor of Smartphone Addiction Among Adolescents. Journal of Ecophysiology and Occupational Health, 31-36. https://doi.org/10.18311/jeoh/2024/35624
  • Elavsky, S., Blahošová, J., Lebedíková, M., Tkaczyk, M., Tancos, M., Plhák, J., Sotolář, O., & Smahel, D. (2022). Researching the links between smartphone behavior and adolescent well-being with the FUTURE-WP4 (modeling the future: understanding the impact of technology on adolescent’s well-being work package 4) project: protocol for an ecological momentary assessment study. JMIR Research Protocols, 11(3), e35984. https://doi.org/10.2196/35984
  • Eryılmaz, A. (2009). Ergen öznel iyi oluş ölçeğinin geliştirilmesi. Türk Eğitim Bilimleri Dergisi, 7(4), 975-989.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gioia, F., Fioravanti, G., Casale, S., & Boursier, V. (2021). The effects of the fear of missing out on people's social networking sites use during the COVID-19 pandemic: the mediating role of online relational closeness and individuals' online communication attitude. Frontiers in Psychiatry, 12, 620442. https://doi.org/10.3389/fpsyt.2021.620442
  • Goswami, S., & Deshmukh, A. (2023). Effect of Smartphone Addiction on the Mental Health of Adolescents: A Literature Review. Mind and Society, 12(4), 37-42. https://doi.org/10.56011/mind-mri-124-20235
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (Vol. 8th Edition). Cengage.
  • Hengudomsub, P., Sudjai, P., Kangwanphanit, P., Thongkamdee, P., & Turale, S. (2024). Promoting Positive Thinking and Reducing Perceived Stress Using the Be Aware of Stress Smartphone Application among At-risk Adolescents: A Quasi-experimental Study. Pacific Rim International Journal of Nursing Research, 28(3), 599-618. https://doi.org/10.60099/prijnr.2024.268281
  • Hoe, S. L. (2008). Issues and procedures in adopting structural equation modelling technique. Journal of Quantitative Methods, 3(1), 76.
  • Huang, S., Lai, X., Ke, L., Qin, X., Yan, J. J., Xie, Y., Dai, X., & Wang, Y. (2022). Smartphone stress: Concept, structure, and development of measurement among adolescents. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 16(5). https://doi.org/10.5817/CP2022-5-1
  • Jeong, E. (2023). The mediating role of smartphone usage time in the relation between stress and anxiety among adolescents during the COVID-19 pandemic. Korean Journal of Stress Research, 31(2), 65-72. https://doi.org/10.17547/kjsr.2023.31.2.65
  • Kater, M.-J., & Schlarb, A. (2020). Smartphone usage in adolescents–motives and link to sleep disturbances, stress and sleep reactivity. Somnologie, 24(4), 245-252. https://doi.org/10.1007/s11818-020-00272-7
  • Kim, I., & Ahn, H. (2023). The longitudinal mediating effect of smartphone dependency on the relationship between exercise time and subjective happiness in adolescents. Healthcare,
  • Kline, P. (1998). The New Psychometrics: Science, Psychology, and Measurement. Routledge.
  • Kwak, M. (2023). The Effects of Adolescents' Smartphone Dependence on Social Relationship Anxiety: Focusing on the mediating effect of self-esteem and social support. The Journal of Learner-Centered Curriculum and Instruction, 23(24), 891-905. https://doi.org/10.22251/jlcci.2023.23.24.891
  • Lam, L. W. (2012). Impact of competitiveness on salespeople's commitment and performance. Journal of business research, 65(9), 1328-1334. https://doi.org/10.1016/j.jbusres.2011.10.026
  • LeBlanc, J. C., Almudevar, A., Brooks, S. J., & Kutcher, S. (2002). Screening for adolescent depression: comparison of the Kutcher Adolescent Depression Scale with the Beck Depression Inventory. Journal of Child and Adolescent Psychopharmacology, 12(2), 113-126. https://doi.org/10.1089/104454602760219153
  • Lee, S. R., Kim, E.-Y., Ha, S., & Kim, J. (2023). Mediating effect of stress recognition on the effect of generalized anxiety disorder on smartphone dependence. Journal of Clinical Medicine, 12(23), 7359. https://doi.org/10.3390/jcm12237359
  • Mougharbel, F. (2023). Screen Time and Mental Health Among Adolescents [Doctoral, University of Ottawa]. Ottawa.
  • Parlak, M. E., Öz, E., Özbey, M. Y., & Kapıcı, Y. (2023). Smartphone addiction and sleep quality in adolescents. Medical Science and Discovery, 10(1), 35-40. https://doi.org/10.36472/msd.v10i1.864
  • Quiroz, F. J. R., Villanueva, I. C. C., Isabel, D.-V. M., Quesada, T. Q., Gálvez, F. C., Yaranga, W. I., & Carazas, R. R.-. (2024). Psychometric Review of the Smartphone Addiction Scale (EAS - IC) in Peruvian Adolescents. International Journal of Religion, 5(5), 165-175. https://doi.org/10.61707/hy9dwc69
  • Rachubińska, K., Cybulska, A., Schneider-Matyka, D., Nowak, M., & Grochans, E. (2023). Correlations between smartphone addiction and depressiveness, daytime sleepiness as well as per-ceived social support in adolescents. European Psychiatry, 66(S1), S381-S382. https://doi.org/10.1192/j.eurpsy.2023.826
  • Rentzsch, K., Erz, E., & Schütz, A. (2021). Development of Short and Ultra-Short Forms of the Multidimensional Self-Esteem Scale. European Journal of Psychological Assessment, 38(4), 270-281. https://doi.org/10.1027/1015-5759/a000660
  • Rose, N. N., Ishak, A. S., Sultan, N. H. H., Ismail, F., & Fahrudin, A. (2022). Effect of digital technology on adolescents. In Impact and role of digital Technologies in Adolescent Lives (pp. 1-18). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-8318-0.ch001
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74. https://doi.org/10.23668/psycharchives.12784
  • Seo, Y., Nam, Y., & Lee, J. (2024). The effect of depression on smartphone addiction: The medicating effects of interpersonal problem in korean adolescents. European Psychiatry, 67(S1), S137-S138. https://doi.org/10.1192/j.eurpsy.2024.314
  • Sharma, D., Goel, N. K., Sidana, A., Kaura, S., & Sehgal, M. (2023). Prevalence of smartphone addiction and its relation with depression among school-going adolescents. Indian Journal of Community Health, 35(1), 27-31. https://doi.org/10.47203/ijch.2023.v35i01.006
  • Sheather, S., & Sheather, S. J. (2009). Diagnostics and transformations for multiple linear regression. A modern approach to regression with R, 151-225. https://doi.org/10.1007/978-0-387-09608-7_6
  • Singh, K., Junnarkar, M., Kaur, J., Singh, K., Junnarkar, M., & Kaur, J. (2016). Norms for test construction. Measures of positive psychology: Development and validation, 17-34. https://doi.org/10.1007/978-81-322-3631-3_2
  • Souza, E. F. D. d. (2020). A influência do uso de smartphone nos comportamentos relacionados à atividade física, desempenho escolar e privação de sono dos adolescentes [Doctoral dissertation, Universidade Estadual Paulista (Unesp)]. Dezembro. http://hdl.handle.net/11449/202695
  • Stavraki, M., García-Márquez, R., Bajo, M., Callejas-Albiñana, A. I., Paredes, B., & Díaz, D. (2022). Brief Version of the Ryff Psychological Well-Being Scales for Children and Adolescents: Evidence of Validity. Psicothema, 34(2), 316-322. https://doi.org/10.7334/psicothema2021.235
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Pearson Boston, MA.
  • Tatar, A., & Bekiroğlu, B. (2019). Translation of the short Form Kutcher Adolescent Depression Scale (KADS-6-Tr) into Turkish and examination of its psychometric properties. International Social Mentality And Researcher Thinkers Journal, 5(22), 1200-1209. https://doi.org/10.31576/smryj.331
  • Wang, J.-L., Rost, D. H., Qiao, R.-J., & Monk, R. (2020). Academic stress and smartphone dependence among Chinese adolescents: A moderated mediation model. Children and Youth Services Review, 118, 105029. https://doi.org/10.1016/j.childyouth.2020.105029
  • Yağci Şentürk, A., Ceylan, A., & Okur, E. (2024). The effects of smartphone addiction on the body in young adults in Turkey. Ethnicity & Health, 29(7), 745-755. https://doi.org/10.1080/13557858.2024.2376040
  • Yao, W., Hou, H., Yang, P., & Ni, S. (2025). The co-occurrence of adolescent smartphone addiction and academic burnout: The role of smartphone stress and digital flourishing. Education and Information Technologies, 30(4), 4987-5007. https://doi.org/10.1007/s10639-024-13017-y
  • Yun, H., & Choi, E. K. (2024). Association between smartphone overdependence and mental health in South Korean adolescents: a secondary data analysis. Child Health Nursing Research, 30(2), 87. https://doi.org/10.4094/chnr.2024.001
  • Zheng, S. (2022). Psychological well-being and smartphone use among college students. PEOPLE International Journal of Social Sciences, 8(1), 199-212. https://doi.org/10.20319/pijss.2022.81.199212
  • Zhu, J., & Wang, R. (2025). Psychological Compensation or Drinking Poison to Quench Thirst: The Dual Effects of Smartphone Use Habits on Depression in Chinese Left-Behind Adolescents. Health Communication, 1-11. https://doi.org/10.1080/10410236.2024.2440804

Turkish Adaptation and Validation of the Short Smartphone Stress Scale for Adolescents

Year 2025, Volume: 14 Issue: 3, 845 - 857, 31.07.2025
https://doi.org/10.14686/buefad.1670321

Abstract

This study aimed to adapt the Short Smartphone Stress Scale (SSSS), which was developed by Huang et al. (2022), into Turkish and examine its psychometric properties among adolescents. The SSSS is a four-point Likert-type scale, consisting of nine items. With the increasing prevalence of smartphone use in youth populations, there is a growing need for culturally validated tools that can assess the psychological stress associated with digital engagement. The sample consisted of 297 secondary and high school students aged between 14 and 17, who completed the Turkish version of the SSSS along with measures of depression and subjective well-being. Confirmatory factor analysis (CFA) supported the original single-factor structure of the SSSS, with acceptable fit indices (χ²(25) = 53.77, χ²/df = 2.15, p < .001, GFI = .98, SRMR = .07, RMSEA = .06, AGFI = .93, and CFI = .95). All item loadings were statistically significant, ranging from .34 to .61. The internal consistency of the scale was adequate (Cronbach’s alpha = .72). Convergent validity of the Turkish SSSS was supported by significant positive correlation with depression and negative correlation with subjective well-being. The findings of the study suggest that the SSSS Turkish form is a valid and reliable instrument for evaluating smartphone-related stress in adolescents. Given its brevity and clarity, the scale can be used effectively in school-based mental health screenings, psychological research, and digital well-being interventions. The study contributes to the growing literature on adolescent digital stress by providing a culturally relevant measurement tool suitable for the Turkish context.

References

  • Abu Khait, A., Menger, A., Al-Atiyyat, N., Hamaideh, S. H., Al-Modallal, H., & Rayapureddy, H. (2024). The Association Between Proneness to Smartphone Addiction and Social Anxiety Among School Students and the Mediating Role of Social Support: A Call to Advance Jordanian Adolescents’ Mental Health. Journal of the American Psychiatric Nurses Association, 10783903241261047. https://doi.org/10.1177/10783903241261047
  • Andrade, A. L. M., Scatena, A., de Oliveira Pinheiro, B., de Oliveira, W. A., Lopes, F. M., & De Micheli, D. (2022). Psychometric properties of the smartphone addiction inventory (SPAI-BR) in Brazilian adolescents. International Journal of Mental Health and Addiction, 20(5), 2690-2705. https://doi.org/10.1007/s11469-021-00542-x
  • Avci, D., Gündoğdu, N. A., Dönmez, R. H., & Avci, F. E. (2023). Students as teachers: effect of the peer education model on reducing smartphone addiction in adolescents. Health education research, 38(2), 107-118. https://doi.org/10.1093/her/cyac042
  • Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach's alpha. Bmj, 314(7080), 572. https://doi.org/10.1136/bmj.314.7080.572
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
  • Byrne, B. M. (2010). Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming (B. M. Byrne, Ed. 2nd ed.). Routledge. https://doi.org/10.4324/9780203805534
  • Byrne, B. M. (2016). Adaptation of assessment scales in cross-national research: Issues, guidelines, and caveats. International Perspectives in Psychology, 5(1), 51-65. https://doi.org/10.1037/ipp0000042
  • Ching, S. M., Lee, K. W., Yee, A., Sivaratnam, D., Hoo, F. K., WA, W. S., Mohamed, M. H., Tan, K. A., Danaee, M., & Ali, N. (2020). The Malay version of smartphone addiction scale: Development, factor structure and validation of a short form for Malaysian adolescents. The Medical Journal of Malaysia, 75(5), 561-567.
  • Clark, C. A., & Harris, K. M. (2021). Smartphone connectivity stress across generations: Validation of a brief scale for adolescents and adults. Computers in Human Behavior Reports, 3, 100095. https://doi.org/10.1016/j.chbr.2021.100095
  • Commission, I. T. (2017). The ITC Guidelines for Translating and Adapting Tests. I. T. Commission. http://www.intestcom.org/
  • Comrey, A., & Lee, H. (1992). Interpretation and application of factor analytic results. Comrey AL, Lee HB. A first course in factor analysis, 2, 1992.
  • Dogra, N., & Sharma, S. (2024). Studying Alienation and Depression as a Predictor of Smartphone Addiction Among Adolescents. Journal of Ecophysiology and Occupational Health, 31-36. https://doi.org/10.18311/jeoh/2024/35624
  • Elavsky, S., Blahošová, J., Lebedíková, M., Tkaczyk, M., Tancos, M., Plhák, J., Sotolář, O., & Smahel, D. (2022). Researching the links between smartphone behavior and adolescent well-being with the FUTURE-WP4 (modeling the future: understanding the impact of technology on adolescent’s well-being work package 4) project: protocol for an ecological momentary assessment study. JMIR Research Protocols, 11(3), e35984. https://doi.org/10.2196/35984
  • Eryılmaz, A. (2009). Ergen öznel iyi oluş ölçeğinin geliştirilmesi. Türk Eğitim Bilimleri Dergisi, 7(4), 975-989.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gioia, F., Fioravanti, G., Casale, S., & Boursier, V. (2021). The effects of the fear of missing out on people's social networking sites use during the COVID-19 pandemic: the mediating role of online relational closeness and individuals' online communication attitude. Frontiers in Psychiatry, 12, 620442. https://doi.org/10.3389/fpsyt.2021.620442
  • Goswami, S., & Deshmukh, A. (2023). Effect of Smartphone Addiction on the Mental Health of Adolescents: A Literature Review. Mind and Society, 12(4), 37-42. https://doi.org/10.56011/mind-mri-124-20235
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (Vol. 8th Edition). Cengage.
  • Hengudomsub, P., Sudjai, P., Kangwanphanit, P., Thongkamdee, P., & Turale, S. (2024). Promoting Positive Thinking and Reducing Perceived Stress Using the Be Aware of Stress Smartphone Application among At-risk Adolescents: A Quasi-experimental Study. Pacific Rim International Journal of Nursing Research, 28(3), 599-618. https://doi.org/10.60099/prijnr.2024.268281
  • Hoe, S. L. (2008). Issues and procedures in adopting structural equation modelling technique. Journal of Quantitative Methods, 3(1), 76.
  • Huang, S., Lai, X., Ke, L., Qin, X., Yan, J. J., Xie, Y., Dai, X., & Wang, Y. (2022). Smartphone stress: Concept, structure, and development of measurement among adolescents. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 16(5). https://doi.org/10.5817/CP2022-5-1
  • Jeong, E. (2023). The mediating role of smartphone usage time in the relation between stress and anxiety among adolescents during the COVID-19 pandemic. Korean Journal of Stress Research, 31(2), 65-72. https://doi.org/10.17547/kjsr.2023.31.2.65
  • Kater, M.-J., & Schlarb, A. (2020). Smartphone usage in adolescents–motives and link to sleep disturbances, stress and sleep reactivity. Somnologie, 24(4), 245-252. https://doi.org/10.1007/s11818-020-00272-7
  • Kim, I., & Ahn, H. (2023). The longitudinal mediating effect of smartphone dependency on the relationship between exercise time and subjective happiness in adolescents. Healthcare,
  • Kline, P. (1998). The New Psychometrics: Science, Psychology, and Measurement. Routledge.
  • Kwak, M. (2023). The Effects of Adolescents' Smartphone Dependence on Social Relationship Anxiety: Focusing on the mediating effect of self-esteem and social support. The Journal of Learner-Centered Curriculum and Instruction, 23(24), 891-905. https://doi.org/10.22251/jlcci.2023.23.24.891
  • Lam, L. W. (2012). Impact of competitiveness on salespeople's commitment and performance. Journal of business research, 65(9), 1328-1334. https://doi.org/10.1016/j.jbusres.2011.10.026
  • LeBlanc, J. C., Almudevar, A., Brooks, S. J., & Kutcher, S. (2002). Screening for adolescent depression: comparison of the Kutcher Adolescent Depression Scale with the Beck Depression Inventory. Journal of Child and Adolescent Psychopharmacology, 12(2), 113-126. https://doi.org/10.1089/104454602760219153
  • Lee, S. R., Kim, E.-Y., Ha, S., & Kim, J. (2023). Mediating effect of stress recognition on the effect of generalized anxiety disorder on smartphone dependence. Journal of Clinical Medicine, 12(23), 7359. https://doi.org/10.3390/jcm12237359
  • Mougharbel, F. (2023). Screen Time and Mental Health Among Adolescents [Doctoral, University of Ottawa]. Ottawa.
  • Parlak, M. E., Öz, E., Özbey, M. Y., & Kapıcı, Y. (2023). Smartphone addiction and sleep quality in adolescents. Medical Science and Discovery, 10(1), 35-40. https://doi.org/10.36472/msd.v10i1.864
  • Quiroz, F. J. R., Villanueva, I. C. C., Isabel, D.-V. M., Quesada, T. Q., Gálvez, F. C., Yaranga, W. I., & Carazas, R. R.-. (2024). Psychometric Review of the Smartphone Addiction Scale (EAS - IC) in Peruvian Adolescents. International Journal of Religion, 5(5), 165-175. https://doi.org/10.61707/hy9dwc69
  • Rachubińska, K., Cybulska, A., Schneider-Matyka, D., Nowak, M., & Grochans, E. (2023). Correlations between smartphone addiction and depressiveness, daytime sleepiness as well as per-ceived social support in adolescents. European Psychiatry, 66(S1), S381-S382. https://doi.org/10.1192/j.eurpsy.2023.826
  • Rentzsch, K., Erz, E., & Schütz, A. (2021). Development of Short and Ultra-Short Forms of the Multidimensional Self-Esteem Scale. European Journal of Psychological Assessment, 38(4), 270-281. https://doi.org/10.1027/1015-5759/a000660
  • Rose, N. N., Ishak, A. S., Sultan, N. H. H., Ismail, F., & Fahrudin, A. (2022). Effect of digital technology on adolescents. In Impact and role of digital Technologies in Adolescent Lives (pp. 1-18). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-8318-0.ch001
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74. https://doi.org/10.23668/psycharchives.12784
  • Seo, Y., Nam, Y., & Lee, J. (2024). The effect of depression on smartphone addiction: The medicating effects of interpersonal problem in korean adolescents. European Psychiatry, 67(S1), S137-S138. https://doi.org/10.1192/j.eurpsy.2024.314
  • Sharma, D., Goel, N. K., Sidana, A., Kaura, S., & Sehgal, M. (2023). Prevalence of smartphone addiction and its relation with depression among school-going adolescents. Indian Journal of Community Health, 35(1), 27-31. https://doi.org/10.47203/ijch.2023.v35i01.006
  • Sheather, S., & Sheather, S. J. (2009). Diagnostics and transformations for multiple linear regression. A modern approach to regression with R, 151-225. https://doi.org/10.1007/978-0-387-09608-7_6
  • Singh, K., Junnarkar, M., Kaur, J., Singh, K., Junnarkar, M., & Kaur, J. (2016). Norms for test construction. Measures of positive psychology: Development and validation, 17-34. https://doi.org/10.1007/978-81-322-3631-3_2
  • Souza, E. F. D. d. (2020). A influência do uso de smartphone nos comportamentos relacionados à atividade física, desempenho escolar e privação de sono dos adolescentes [Doctoral dissertation, Universidade Estadual Paulista (Unesp)]. Dezembro. http://hdl.handle.net/11449/202695
  • Stavraki, M., García-Márquez, R., Bajo, M., Callejas-Albiñana, A. I., Paredes, B., & Díaz, D. (2022). Brief Version of the Ryff Psychological Well-Being Scales for Children and Adolescents: Evidence of Validity. Psicothema, 34(2), 316-322. https://doi.org/10.7334/psicothema2021.235
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Pearson Boston, MA.
  • Tatar, A., & Bekiroğlu, B. (2019). Translation of the short Form Kutcher Adolescent Depression Scale (KADS-6-Tr) into Turkish and examination of its psychometric properties. International Social Mentality And Researcher Thinkers Journal, 5(22), 1200-1209. https://doi.org/10.31576/smryj.331
  • Wang, J.-L., Rost, D. H., Qiao, R.-J., & Monk, R. (2020). Academic stress and smartphone dependence among Chinese adolescents: A moderated mediation model. Children and Youth Services Review, 118, 105029. https://doi.org/10.1016/j.childyouth.2020.105029
  • Yağci Şentürk, A., Ceylan, A., & Okur, E. (2024). The effects of smartphone addiction on the body in young adults in Turkey. Ethnicity & Health, 29(7), 745-755. https://doi.org/10.1080/13557858.2024.2376040
  • Yao, W., Hou, H., Yang, P., & Ni, S. (2025). The co-occurrence of adolescent smartphone addiction and academic burnout: The role of smartphone stress and digital flourishing. Education and Information Technologies, 30(4), 4987-5007. https://doi.org/10.1007/s10639-024-13017-y
  • Yun, H., & Choi, E. K. (2024). Association between smartphone overdependence and mental health in South Korean adolescents: a secondary data analysis. Child Health Nursing Research, 30(2), 87. https://doi.org/10.4094/chnr.2024.001
  • Zheng, S. (2022). Psychological well-being and smartphone use among college students. PEOPLE International Journal of Social Sciences, 8(1), 199-212. https://doi.org/10.20319/pijss.2022.81.199212
  • Zhu, J., & Wang, R. (2025). Psychological Compensation or Drinking Poison to Quench Thirst: The Dual Effects of Smartphone Use Habits on Depression in Chinese Left-Behind Adolescents. Health Communication, 1-11. https://doi.org/10.1080/10410236.2024.2440804
There are 50 citations in total.

Details

Primary Language English
Subjects Cross-Cultural Scale Adaptation, Psychological Counseling and Guidance (Other), Educational Technology and Computing
Journal Section Research Article
Authors

Ali Geriş 0000-0003-2136-5490

Erol Esen 0000-0002-8285-2666

Submission Date April 5, 2025
Acceptance Date June 25, 2025
Early Pub Date July 31, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Geriş, A., & Esen, E. (2025). Turkish Adaptation and Validation of the Short Smartphone Stress Scale for Adolescents. Bartın University Journal of Faculty of Education, 14(3), 845-857. https://doi.org/10.14686/buefad.1670321

All the articles published in the journal are open access and distributed under the conditions of CommonsAttribution-NonCommercial 4.0 International License 

88x31.png


Bartın University Journal of Faculty of Education