İyonlaşma Enerjisi Tanımına Kavramsal Yaklaşım
Yıl 2017,
, 516 - 528, 30.06.2017
AYŞE Yalçın-çelik
,
ZİYA Kılıç
Öz
Kimya kavramsal ağırlıklı ve soyut kavramları çok olan bir bilim
dalıdır. Bu kavramların tanımı kavramların içeriğine uygun olarak yapılmalı ve
tanımlarda kimya öğretimi de dikkate alınmalıdır. Kavramların sadece bilimsel
olarak doğru olması yeterli değildir. Bu
araştırmada, “iyonlaşma enerjisi” kavramı kimya öğretiminin amaçları açısından
kavramsal olarak incelenmiş ve ders kitaplarında yer alan tanımlar bilimsel
görüşü yansıtması ve anlaşılırlığı açısından değerlendirilmiştir. İyonlaşma
enerjisini tanımlarken elektronu kopartılacak olan atomun ve bu atomdan
kopartılacak olan elektronun konumun belirtilmesi önemlidir. Ancak basım dili
İngilizce ve Türkçe olan ders kitaplarında iyonlaşma enerjisi tanımlanırken
atomun konumu için “gaz halindeki bir atom” veya “gaz halindeki nötral bir
atom”; elektronun konumu içinde “en dış kabuktaki elektron” veya “en gevşek
bağlı elektron” ifadelerinin sıklıkla tercih edildiği belirlenmiştir. Ders
kitaplarındaki bu tanımların IUPAC’ın tanımı ile uyumsuz olduğu görülmektedir.
Kaynakça
- Barke, H. D., Hazari, A. ce Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemistry education. Berlin: Springer.
- Barker, V. (2000). Beyond appearances: Students’ misconceptions about basic chemical ideas. A reportprepared for the Royal Society of Chemistry. London: Royal Society of Chemistry. [http://www.chemsoc.org/networks/learnnet/miscon.htm]).
- Ben-Zvi, R., Eylon, B. S., ve Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education. 63(1), 64.
- Bogdan, R., ve Biklen, S. K. (1997). Qualitative research for education. Boston: Allyn & Bacon.
- Bretz, S.L. ve McClary, L. (2015), Students’ understandings of acid strength: How meaningful is reliability when measuring alternative conceptions? Journal of Chemical Education. 92(2), 212-219.
- Coll, R. K., ve Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464-486.
- Gabel, D.L. ve Samuel, K.V. (1987). Understanding the particulate nature of matter. Journal of Chemical Education. 64(8), 695-697.
- Genç, Ş. (2008). Sosya-kültürel oluşturmacılık temelinde tasarlanan öğretimin ortaöğretim öğrencilerinin periyodik özellikleri öğrenmeleri üzerine etkisinin belirlenmesi. (yayınlanmamış Yüksek Lisans Tezi). Marmara Üniversitesi, İstanbul.
- Griffiths, A. K., Thomey, K., Cooke, B., ve Normore, G. (1988). Remediation of student-specific misconceptions relating to three science concepts. Journal of Research in Science Teaching 25: 709–719.
- IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaughtand A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) createdby M. Nic, J. Jirat, B. Kosata; up dates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook
- Karasar, N. (2008). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler. Ankara: Nobel yayın dağıtım Tic. Ltd. Şti.
- Nakhleh, M., (1992). Why some students don’t learn chemistry: Chemical misconceptions, Journal of Chemical Education, 69(3), 191-196).
- National Research Council. (1996). National science education standards. National Academies Press.
- Nussbaum, J. (1981). Towards a diagnosis by science teachers of pupils’ misconceptions: An exercise with student teachers. International Journal of Science Education 3: 159–169.
- Pauling, L. (1970). General Chemistry. 3. Edition. San Francisco: W.H. Freeman and Company.
- Schmidt, H.-J. (1997). Students’ misconceptions - looking for a pattern. Science Education. 81: 123–135.
- Skoog, D. A., Holler, F. J., ve Crouch, S. R. (2007). Principles of instrumental analysis. Thomson Brooks/Cole.
- Taber, K. S. (1998). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education. 20, 1001-1014.
- Taber, K. S., (2002). Alternative conceptions in chemistry: Prevention, diagnosis and cure. London: The Royal Society of Chemistry.
- Taber, K.S. (2003). Understanding ionisation energy: Physical, chemical and alternative conceptions, Chemistry Education: Research and Practice. 4(2), 149-169).
- Talim Terbiye Kurulu [TTK] (2005). İlköğretim Fen ve Teknoloji Dersi (4. ve 5. Sınıflar) Öğretim Programı. https://ttkb.meb.gov.tr/www/ogretim-programlari/icerik/72.
- Tan, K. C. D., ve Taber, K. S. (2009). Ionization energy: Implications of pre-service teachers’ conceptions. Journal of Chemical Education, 86(5), 623.
- Tan, K. C. D., Taber, K. S., Goh, N. K., ve Chia, L. S. (2005). The ionisation energy diagnostic instrument: a two – tier multiple-choice instrument to determine high school students’ understanding of ionisation energy. Chemistry Education Research and Practice. 6(4), 180-197.
- Tan, K. C. D.,Taber, K. S., Liu, X., Coll, R. K., Lorenzo, M., Li, J., ... veChia, L. S. (2008). Students’conceptions of ionisation energy: A cross cultural study. International Journal of Science Education. 30(2), 263-283.
- Tezcan, H. ve Kıpık, M. (2005). Lise 1. sınıf öğrencilerine periyodik tablo öğretiminde yeni bir yaklaşım. Milli Eğitim Dergisi, 33(166), 257-276.
- Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of ScienceEducation. 10: 159–169.
- Tsaparlis, G. ve H. Sevian (2013). Introduction: Concepts of matter- complex to teach and difficult to learn . G. Tsaparlisand H. Sevian (eds.), Concepts of matter in science education, innovations in science education and technology 19, DOI 10.1007/978-94-007-5914-5_1
- Yıldırım, A., & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Conceptual Approach towards the Definition of Ionization Energy
Yıl 2017,
, 516 - 528, 30.06.2017
AYŞE Yalçın-çelik
,
ZİYA Kılıç
Öz
Chemistry is a concept-based discipline with numerous abstract concepts.
These concepts should be defined appropriately for their content and chemistry
education should also be taken into consideration in definitions. Scientific
correctness of the concepts is not sufficient.
This study analyzes the concept of ionization energy in terms of the
targets of chemistry education and evaluates the definitions in textbooks in
terms of reflecting scientific opinion and comprehensibility. It is important
to indicate the location of the atom from which the electron will be ejected
and the electron to be ejected from this atom while defining ionization energy.
However, it was observed that the expressions of “a gaseous atom” or “a neutral
gaseous atom” were frequently used for the location of the atom and the
expressions of “the valence shell electron” or “the loosest-bound electron”
were frequently used for the location of electron in the textbooks printed in
English or Turkish. These definitions in textbooks do not comply with the
definition of the IUPAC.
Kaynakça
- Barke, H. D., Hazari, A. ce Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemistry education. Berlin: Springer.
- Barker, V. (2000). Beyond appearances: Students’ misconceptions about basic chemical ideas. A reportprepared for the Royal Society of Chemistry. London: Royal Society of Chemistry. [http://www.chemsoc.org/networks/learnnet/miscon.htm]).
- Ben-Zvi, R., Eylon, B. S., ve Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education. 63(1), 64.
- Bogdan, R., ve Biklen, S. K. (1997). Qualitative research for education. Boston: Allyn & Bacon.
- Bretz, S.L. ve McClary, L. (2015), Students’ understandings of acid strength: How meaningful is reliability when measuring alternative conceptions? Journal of Chemical Education. 92(2), 212-219.
- Coll, R. K., ve Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464-486.
- Gabel, D.L. ve Samuel, K.V. (1987). Understanding the particulate nature of matter. Journal of Chemical Education. 64(8), 695-697.
- Genç, Ş. (2008). Sosya-kültürel oluşturmacılık temelinde tasarlanan öğretimin ortaöğretim öğrencilerinin periyodik özellikleri öğrenmeleri üzerine etkisinin belirlenmesi. (yayınlanmamış Yüksek Lisans Tezi). Marmara Üniversitesi, İstanbul.
- Griffiths, A. K., Thomey, K., Cooke, B., ve Normore, G. (1988). Remediation of student-specific misconceptions relating to three science concepts. Journal of Research in Science Teaching 25: 709–719.
- IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaughtand A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) createdby M. Nic, J. Jirat, B. Kosata; up dates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook
- Karasar, N. (2008). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler. Ankara: Nobel yayın dağıtım Tic. Ltd. Şti.
- Nakhleh, M., (1992). Why some students don’t learn chemistry: Chemical misconceptions, Journal of Chemical Education, 69(3), 191-196).
- National Research Council. (1996). National science education standards. National Academies Press.
- Nussbaum, J. (1981). Towards a diagnosis by science teachers of pupils’ misconceptions: An exercise with student teachers. International Journal of Science Education 3: 159–169.
- Pauling, L. (1970). General Chemistry. 3. Edition. San Francisco: W.H. Freeman and Company.
- Schmidt, H.-J. (1997). Students’ misconceptions - looking for a pattern. Science Education. 81: 123–135.
- Skoog, D. A., Holler, F. J., ve Crouch, S. R. (2007). Principles of instrumental analysis. Thomson Brooks/Cole.
- Taber, K. S. (1998). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education. 20, 1001-1014.
- Taber, K. S., (2002). Alternative conceptions in chemistry: Prevention, diagnosis and cure. London: The Royal Society of Chemistry.
- Taber, K.S. (2003). Understanding ionisation energy: Physical, chemical and alternative conceptions, Chemistry Education: Research and Practice. 4(2), 149-169).
- Talim Terbiye Kurulu [TTK] (2005). İlköğretim Fen ve Teknoloji Dersi (4. ve 5. Sınıflar) Öğretim Programı. https://ttkb.meb.gov.tr/www/ogretim-programlari/icerik/72.
- Tan, K. C. D., ve Taber, K. S. (2009). Ionization energy: Implications of pre-service teachers’ conceptions. Journal of Chemical Education, 86(5), 623.
- Tan, K. C. D., Taber, K. S., Goh, N. K., ve Chia, L. S. (2005). The ionisation energy diagnostic instrument: a two – tier multiple-choice instrument to determine high school students’ understanding of ionisation energy. Chemistry Education Research and Practice. 6(4), 180-197.
- Tan, K. C. D.,Taber, K. S., Liu, X., Coll, R. K., Lorenzo, M., Li, J., ... veChia, L. S. (2008). Students’conceptions of ionisation energy: A cross cultural study. International Journal of Science Education. 30(2), 263-283.
- Tezcan, H. ve Kıpık, M. (2005). Lise 1. sınıf öğrencilerine periyodik tablo öğretiminde yeni bir yaklaşım. Milli Eğitim Dergisi, 33(166), 257-276.
- Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of ScienceEducation. 10: 159–169.
- Tsaparlis, G. ve H. Sevian (2013). Introduction: Concepts of matter- complex to teach and difficult to learn . G. Tsaparlisand H. Sevian (eds.), Concepts of matter in science education, innovations in science education and technology 19, DOI 10.1007/978-94-007-5914-5_1
- Yıldırım, A., & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.