The aim of this paper is to classify $(k,\mu)$-paracontact metric spaces satisfying certain curvature conditions. We present the curvature tensors of (k,$\mu $)-Paracontact manifold satisfying the conditions $R\cdot W_{6}=0$, $ R\cdot W_{7}=0$, $R\cdot W_{8}=0$ and $R\cdot W_{9}=0$. According these cases, $(k,\mu)$-Paracontact manifolds have been characterized. Also, several results are obtained.
[1] D. V. Aleekseevski, C. Medori, A. Tomassini, Maximally homogeneous para-CR manifolds, Ann. Glob. Anal. Geom., 30
(2006), 1-27.
[2] M. Atc¸eken, P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds, Korcan
J. Math., 28(2020), 555-571.
[3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
[4] B. Cappelletti-Montano, I. K¨upeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geom.
Appl., 30 (2012), 665-693.
[5] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985),
173-187.
[6] B. O. Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[7] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1) (1982), 133-139.
[8] M. M. Tripathi, P. Gupta, Tcurvature tensor on a semi-Riemannian manifold, 4 (1) (2011), 117-129.
[9] P. Uygun, M. Atc¸eken, On (k;m)-paracontact metricspaces satisfying some conditions on theW?
0 curvature tensor, New
Trend Math. Sci., 9 (2) (2021), 26-37.
[10] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, The geometry of invariant submanifolds of a (k;m)-paracontact metric manifold,
Int. J. Eng. Technol., 84 (1) (2022), 355-363.
[11] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, Some characterizations invariant submanifolds of a (k;m)-paracontact space,
Journal of Engineering and Research and Applied Science, 11 (1), (2022), 1967-1972.
[12] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam J. Math., 6 (1) (2020),
16-26.
[13] V. Venkatesha, S. Basavarajappa,W2-Curvature tensor on generalized sasakian space forms, Cubo A Mathematical Journal,
20(1) (2018), 17-29.
[14] K. Yano, M. Kon, Structures Manifolds, Singapore, World Scientific, 1984.
[15] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36 (2009), 37-60.
[16] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five,
Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27-34.
[1] D. V. Aleekseevski, C. Medori, A. Tomassini, Maximally homogeneous para-CR manifolds, Ann. Glob. Anal. Geom., 30
(2006), 1-27.
[2] M. Atc¸eken, P. Uygun, Characterizations for totally geodesic submanifolds of (k;m)-paracontact metric manifolds, Korcan
J. Math., 28(2020), 555-571.
[3] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 697-718.
[4] B. Cappelletti-Montano, I. K¨upeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geom.
Appl., 30 (2012), 665-693.
[5] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985),
173-187.
[6] B. O. Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[7] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1) (1982), 133-139.
[8] M. M. Tripathi, P. Gupta, Tcurvature tensor on a semi-Riemannian manifold, 4 (1) (2011), 117-129.
[9] P. Uygun, M. Atc¸eken, On (k;m)-paracontact metricspaces satisfying some conditions on theW?
0 curvature tensor, New
Trend Math. Sci., 9 (2) (2021), 26-37.
[10] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, The geometry of invariant submanifolds of a (k;m)-paracontact metric manifold,
Int. J. Eng. Technol., 84 (1) (2022), 355-363.
[11] P. Uygun, S. Dirik, M. Atc¸eken, T. Mert, Some characterizations invariant submanifolds of a (k;m)-paracontact space,
Journal of Engineering and Research and Applied Science, 11 (1), (2022), 1967-1972.
[12] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam J. Math., 6 (1) (2020),
16-26.
[13] V. Venkatesha, S. Basavarajappa,W2-Curvature tensor on generalized sasakian space forms, Cubo A Mathematical Journal,
20(1) (2018), 17-29.
[14] K. Yano, M. Kon, Structures Manifolds, Singapore, World Scientific, 1984.
[15] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36 (2009), 37-60.
[16] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five,
Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27-34.
Uygun, P., Dirik, S., Atçeken, M., Mert, T. (2022). Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences, 5(4), 161-169. https://doi.org/10.33434/cams.1171815
AMA
Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. December 2022;5(4):161-169. doi:10.33434/cams.1171815
Chicago
Uygun, Pakize, Süleyman Dirik, Mehmet Atçeken, and Tuğba Mert. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences 5, no. 4 (December 2022): 161-69. https://doi.org/10.33434/cams.1171815.
EndNote
Uygun P, Dirik S, Atçeken M, Mert T (December 1, 2022) Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences 5 4 161–169.
IEEE
P. Uygun, S. Dirik, M. Atçeken, and T. Mert, “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”, Communications in Advanced Mathematical Sciences, vol. 5, no. 4, pp. 161–169, 2022, doi: 10.33434/cams.1171815.
ISNAD
Uygun, Pakize et al. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences 5/4 (December 2022), 161-169. https://doi.org/10.33434/cams.1171815.
JAMA
Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. 2022;5:161–169.
MLA
Uygun, Pakize et al. “Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces”. Communications in Advanced Mathematical Sciences, vol. 5, no. 4, 2022, pp. 161-9, doi:10.33434/cams.1171815.
Vancouver
Uygun P, Dirik S, Atçeken M, Mert T. Certain Curvature Conditions on $(k,\mu )$-Paracontact Metric Spaces. Communications in Advanced Mathematical Sciences. 2022;5(4):161-9.