Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 117 - 124, 01.07.2025
https://doi.org/10.33434/cams.1660609

Abstract

References

  • [1] S. G. Krantz, Essentials of topology with applications, CRC Press, New York, 2009. http://dx.doi.org/10.1201/b12333
  • [2] H. Poincaré, Sur les équations de la dynamique et le probl`eme des trois corps, Acta Math., 13 (1890), 1-272.
  • [3] R. De Leo, J. A. Yorke, Streams and graphs of dynamical systems, Qual. Theory Dyn. Syst., 24 (2024), Article ID 1, 53 pages. https://doi.org/10.1007/s12346-024-01112-x
  • [4] M. Feldman, Hilbert Transform Applications in Mechanical Vibration, John Wiley and Sons, 2011. http://doi.org/10.1002/9781119991656
  • [5] P. Pokorny, A. Klic, Dynamical systems generated by two alternating vector fields, Eur. Phys. J. Special Top., 165 (2008), 61-71. https://doi.org/10.1140/epjst/e2008-00849-9
  • [6] R. Forman, Combinatorial vector fields and dynamical systems, Mathematische Zeitschrift, 228 (1998), 629–681. https://doi.org/10.1007/PL00004638
  • [7] S. Tiwari, J. F. Peters, Proximal groups: Extension of topological groups. Application in the concise representation of Hilbert envelopes on oscillatory motion waveforms, Comm. Algebra, 52(9) (2024), 3904–3914. https://doi.org/10.1080/00927872.2024.2334895
  • [8] M. S. Haider, J. F. Peters, Temporal proximities: Self-similar temporally close shapes, Chaos Solitons Fractals, 151 (2021), Article ID 111237, 10 pages. https://doi.org/10.1016/j.chaos.2021.111237
  • [9] J. F. Peters, T. Vergili, Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-Yamaguchi good covering and Jordan curve theorems, Appl. Gen. Topol., 24(1) (2023), 25–45. https://doi.org/10.4995/agt.2023.17046
  • [10] E. Ozkan, B. Kuloglu, J. F. Peters, k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity, Chaos Solitons Fractals, 153(2) (2021), Article ID 111473. https://doi.org/10.1016/j.chaos.2021.111473
  • [11] E. Erdag, J. F. Peters, O. Deveci, The Jacobsthal-Padovan-Fibonacci p-sequence and its application in the concise representation of vibrating systems with dual proximal groups, J. Supercomput., 81 (2025), Article ID 197. https://doi.org/10.1007/s11227-024-06608-6
  • [12] L. Euler, Introductio in Analysin Infinitorum. (Latin), Sociedad Andaluza de Educacion Matematica Thales, Springer, New York, 1748.
  • [13] J. F. Peters, T. Vergili, F. Ucan, D. Vakeesan, Indefinite descriptive proximities inherent in dynamical systems. An Axiomatic Approach, arXiv, (2025). https://doi.org/10.48550/arXiv.2501.02585
  • [14] D. G. Magiros, On stability definitions of dynamical systems, Proc. Nat. Acad. Sci. U.S.A., 53(6) (1965), 1288–1294,
  • [15] Z. Pawlak, J. F. Peters, Jak bliski? [Polish] (How near?). In: Systemy Wspomagania Decyzji, vol. I, 2007, pp. 57–109, University of Silesia, Katowice, ISBN 83-920730-4-5.
  • [16] J. F. Peters, T. U. Liyanage, Energy Dissipation in Hilbert Envelopes on Motion Waveforms Detected in Vibrating Systems: An Axiomatic Approach, Commun. Adv. Math. Sci., 7(4) (2024), 178–186. https://doi.org/10.33434/cams.1549815

Characteristically Near Stable Vector Fields in the Polar Complex Plane

Year 2025, Volume: 8 Issue: 2, 117 - 124, 01.07.2025
https://doi.org/10.33434/cams.1660609

Abstract

This paper introduces results for characteristically proximal vector fields that are stable or non-stable in the polar complex plane $\mathbb{C}$. All characteristic vectors (aka eigenvectors) emanate from the same fixed point in $\mathbb{C}$, namely, 0. Stable characteristic vector fields satisfy an extension of the Krantz stability condition, namely, the maximal eigenvalue of a stable system lies within or on the boundary of the unit circle in $\mathbb{C}$. An application is given for stable vector fields detected in motion waveforms in infrared video frames. AI is used to separate the changing from the unchanging parts of each video frame.

Ethical Statement

This paper has not been submitted to any other publication.

Supporting Institution

University of Manitoba, Canada

Thanks

Many thanks for considering this paper for publication in the CAMS journal.

References

  • [1] S. G. Krantz, Essentials of topology with applications, CRC Press, New York, 2009. http://dx.doi.org/10.1201/b12333
  • [2] H. Poincaré, Sur les équations de la dynamique et le probl`eme des trois corps, Acta Math., 13 (1890), 1-272.
  • [3] R. De Leo, J. A. Yorke, Streams and graphs of dynamical systems, Qual. Theory Dyn. Syst., 24 (2024), Article ID 1, 53 pages. https://doi.org/10.1007/s12346-024-01112-x
  • [4] M. Feldman, Hilbert Transform Applications in Mechanical Vibration, John Wiley and Sons, 2011. http://doi.org/10.1002/9781119991656
  • [5] P. Pokorny, A. Klic, Dynamical systems generated by two alternating vector fields, Eur. Phys. J. Special Top., 165 (2008), 61-71. https://doi.org/10.1140/epjst/e2008-00849-9
  • [6] R. Forman, Combinatorial vector fields and dynamical systems, Mathematische Zeitschrift, 228 (1998), 629–681. https://doi.org/10.1007/PL00004638
  • [7] S. Tiwari, J. F. Peters, Proximal groups: Extension of topological groups. Application in the concise representation of Hilbert envelopes on oscillatory motion waveforms, Comm. Algebra, 52(9) (2024), 3904–3914. https://doi.org/10.1080/00927872.2024.2334895
  • [8] M. S. Haider, J. F. Peters, Temporal proximities: Self-similar temporally close shapes, Chaos Solitons Fractals, 151 (2021), Article ID 111237, 10 pages. https://doi.org/10.1016/j.chaos.2021.111237
  • [9] J. F. Peters, T. Vergili, Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-Yamaguchi good covering and Jordan curve theorems, Appl. Gen. Topol., 24(1) (2023), 25–45. https://doi.org/10.4995/agt.2023.17046
  • [10] E. Ozkan, B. Kuloglu, J. F. Peters, k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity, Chaos Solitons Fractals, 153(2) (2021), Article ID 111473. https://doi.org/10.1016/j.chaos.2021.111473
  • [11] E. Erdag, J. F. Peters, O. Deveci, The Jacobsthal-Padovan-Fibonacci p-sequence and its application in the concise representation of vibrating systems with dual proximal groups, J. Supercomput., 81 (2025), Article ID 197. https://doi.org/10.1007/s11227-024-06608-6
  • [12] L. Euler, Introductio in Analysin Infinitorum. (Latin), Sociedad Andaluza de Educacion Matematica Thales, Springer, New York, 1748.
  • [13] J. F. Peters, T. Vergili, F. Ucan, D. Vakeesan, Indefinite descriptive proximities inherent in dynamical systems. An Axiomatic Approach, arXiv, (2025). https://doi.org/10.48550/arXiv.2501.02585
  • [14] D. G. Magiros, On stability definitions of dynamical systems, Proc. Nat. Acad. Sci. U.S.A., 53(6) (1965), 1288–1294,
  • [15] Z. Pawlak, J. F. Peters, Jak bliski? [Polish] (How near?). In: Systemy Wspomagania Decyzji, vol. I, 2007, pp. 57–109, University of Silesia, Katowice, ISBN 83-920730-4-5.
  • [16] J. F. Peters, T. U. Liyanage, Energy Dissipation in Hilbert Envelopes on Motion Waveforms Detected in Vibrating Systems: An Axiomatic Approach, Commun. Adv. Math. Sci., 7(4) (2024), 178–186. https://doi.org/10.33434/cams.1549815
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

James F. Peters 0000-0002-1026-4638

Enze Cui 0009-0008-6856-4570

Submission Date March 18, 2025
Acceptance Date June 29, 2025
Early Pub Date July 1, 2025
Publication Date July 1, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Peters, J. F., & Cui, E. (2025). Characteristically Near Stable Vector Fields in the Polar Complex Plane. Communications in Advanced Mathematical Sciences, 8(2), 117-124. https://doi.org/10.33434/cams.1660609
AMA Peters JF, Cui E. Characteristically Near Stable Vector Fields in the Polar Complex Plane. Communications in Advanced Mathematical Sciences. July 2025;8(2):117-124. doi:10.33434/cams.1660609
Chicago Peters, James F., and Enze Cui. “Characteristically Near Stable Vector Fields in the Polar Complex Plane”. Communications in Advanced Mathematical Sciences 8, no. 2 (July 2025): 117-24. https://doi.org/10.33434/cams.1660609.
EndNote Peters JF, Cui E (July 1, 2025) Characteristically Near Stable Vector Fields in the Polar Complex Plane. Communications in Advanced Mathematical Sciences 8 2 117–124.
IEEE J. F. Peters and E. Cui, “Characteristically Near Stable Vector Fields in the Polar Complex Plane”, Communications in Advanced Mathematical Sciences, vol. 8, no. 2, pp. 117–124, 2025, doi: 10.33434/cams.1660609.
ISNAD Peters, James F. - Cui, Enze. “Characteristically Near Stable Vector Fields in the Polar Complex Plane”. Communications in Advanced Mathematical Sciences 8/2 (July2025), 117-124. https://doi.org/10.33434/cams.1660609.
JAMA Peters JF, Cui E. Characteristically Near Stable Vector Fields in the Polar Complex Plane. Communications in Advanced Mathematical Sciences. 2025;8:117–124.
MLA Peters, James F. and Enze Cui. “Characteristically Near Stable Vector Fields in the Polar Complex Plane”. Communications in Advanced Mathematical Sciences, vol. 8, no. 2, 2025, pp. 117-24, doi:10.33434/cams.1660609.
Vancouver Peters JF, Cui E. Characteristically Near Stable Vector Fields in the Polar Complex Plane. Communications in Advanced Mathematical Sciences. 2025;8(2):117-24.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..