Analytical and Solutions of Fourth Order Difference Equations
Year 2019,
Volume: 2 Issue: 1, 9 - 21, 22.03.2019
Marwa M. Alzubaidi
,
Elsayed M. Elsayed
Abstract
In this article, we presented the solutions of the following recursive sequences\[ x_{n+1}=\frac{x_{n-2}x_{n-3}}{x_{n}(\pm1\pm x_{n-2}x_{n-3})}, \] where the initial conditions $x_{-3}\ ,x_{-2}\ ,x_{-1}$\ and $x_{0}\ $are arbitrary real numbers. Also, we studied some dynamic behavior of these equations.
References
- [1] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer
Academic Publishers, Dordrecht, 1993.
- [2] A. Asiri, M. M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput.
Anal. Appl., 24 (3) (2018), 444-453.
- [3] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures,
Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004.
- [4] Q. Din, Global Stability and Neimark-Sacker bifurcation of a host-parasitoid model, Int. J. Syst. Sct., 48 (6) (2017),
1194-1202.
- [5] Q. Din, E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software, 2 (2014),
89–103.
- [6] Q. Din, M. A. Khan, Global stability of a system of exponential difference equations, CMMPG, 1 (2) (2016), 71-85.
- [7] Q. Din, M. A. Khan, U. Saeed, Qualitative behaviour of generalised Beddington model, Zeitschrift f¨ur Naturforschung A,
71 (2) (2016), 145-155.
- [8] E. M. Elabbasy, A. A. Elsadany, S. Ibrahim, Qualitative behavior of rational difference equations of Higher Order, Malaya
J. Mat., 3 (4) (2015), 530–539.
- [9] H. El-Metwally, E. M. Elsayed, Qualitative Behavior of some rational difference equations, J. Comput. Anal. Appl., 20 (2)
(2016), 226-236.
- [10] M. A. El-Moneam, On The dynamics of the solutions of the rational recursive sequences, Brit. J. Math. Comput. Sci., 5
(2015), 654–665.
- [11] M. A. El-Moneam, S. O. Alamoudy, On study of the asymptotic behavior of some rational difference equations, DCDIS, A:
Mathematical Analysis, 22 (2015), 157-176.
- [12] E. M. Elsayed, On the solutions and periodicity of some rational systems of difference equations, B. Math. Soc. Sci. Math.,
60 (108) (2) (2017), 159–171.
- [13] E. M. Elsayed, A. Khaliq, Global attractivity and periodicity behavior of a recursive sequence, J. Comput. Anal. Appl., 22
(2) (2017), 369-379.
- [14] E. M. Elsayed, A. M. Ahmed, Dynamics of a three-dimensional systems of rational difference equations, Math. Method
Appl. Sci., 39 (5) (2016), 1026–1038.
- [15] E. M. Elsayed, A. Alghamdi, Dynamics and global stability of higher order nonlinear difference equation, J. Comput.
Anal. Appl., 21 (3) (2016), 493-503.
- [16] E. M. Elsayed, M. M. El-Dessoky, Dynamics and global behavior for a fourth-order rational difference equation, Hacet. J.
Math. Stat., 42 (5) (2013), 479-494.
- [17] E. M. Elsayed, M. Ghazel, A. E. Matouk, Dynamical analysis of the rational difference equation $x_{n+1}=Cx_{n-3}/(A+Bx_{n-1}
x_{n-3})$, J. Comput. Anal. Appl, 23 (3) (2017), 496-507.
- [18] E. M. Elsayed, T. F. Ibrahim, Solutions and periodicity of a rational recursive sequences of order five, B. Malaysian Math.
Sci. Soc., 38 (1) (2015), 95-112.
- [19] E. M. Elsayed, T. F. Ibrahim, Periodicity and Solutions for Some Systems of Nonlinear Rational Difference Equations,
Hacet. J. Math. Stat., 44 (6) (2015), 1361–1390.
- [20] M. Erdogan, K. Uslu, Behavior of a Nonlinear Difference Equation $x_{n+1}=\dfrac{1-x_{n}}{A+\underset{i=1}{\overset{k}{\sum}}x_{n-i}},$; Journal of Life Sciences, 10 (2016), 215-219.
- [21] T. F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., 16 (2014),
552-564.
- [22] T. F. Ibrahim, Solving a class of third-order max-type difference equations, DCDIS, Series A:Mathematical Analysis ,
21(2014), 333-342.
- [23] T. F. Ibrahim, Closed form expression of tractable semi-max-type two-dimensional system of difference equations with
variable coefficients, JOEMS, 24 (4) (2016), 538-544.
- [24] T. F. Ibrahim , M. A. El-Moneam, Global stability of a higher-order difference equation, Iran. J. Sci. Technol. A , 1 (41)
(2017), 51-58
- [25] R. Karatas, C. Cinar, D. Simsek, On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5}},\ $
; Int. J. Contemp. Math. Sci., 1 (10) (2006) 495 500.
- [26] A. Q. Khan, Q. Din, M. N. Qureshi, T. F. Ibrahim, Global behavior of an anti-competitive system of fourth-order rational
difference equations, Computational Ecology and Software, 2014, 4(1).
- [27] K. Liu, P. Li, F. Han, W. Zhong, Global dynamics of nonlinear difference equation $x_{n+1}=A+x_{n}/x_{n-1}x_{n-2}$, J. Comput.
Anal. Appl., 24 (6) (2018), 1125-1132.
- [28] R. Mostafaei, N. Rastegar, On a recurrence relation, QScience Connect, 10 (2014), 1-11.
- [29] U. Saeed, M. Ozair, T. Hussain, Q. Din, Fractional-order vector-host disease model, DCDIS, Series B: Applications &
Algorithms, 24 (2017), 97-111.
- [30] H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic
Publishers, Dordrecht, 2003.
- [31] D. T. Tollou, Y. Yazlik, N. Taskara, Behavior of positive solutions of a difference equation, J. Appl. Math. & Informatics,
35 (3-4) (2017), 217 - 230.
- [32] N. Touafek, On a second order rational difference equation, Hacet. J. Math. Stat., 41 (6) (2012), 867–874.
- [33] C. Wang, M. Hu, On the solutions of a rational recursive sequence, JMI, 1 (2013), 25-33.
- [34] C. Y. Wang, X. J. Fang, R. Li, On the dynamics of a certain four-order fractional difference equations, J. Comput. Anal.
Appl., 22 (5) (2017), 968-976.
- [35] Y. Yazlik, E. M. Elsayed, N. Taskara, On the behaviour of the solutions of difference equation systems, J. Comput. Anal.
Appl., 16 (5) (2014), 932–941.
- [36] E. M. E. Zayed, Qualitative behavior of the rational recursive sequence $x_{n+1}=Ax_{n}+Bx_{n-k}+\dfrac{p+x_{n-k}}{qx_{n}+x_{n-k}
}$ , Inter. J. Adv. Math., 1 (1) (2014), 44-55.
- [37] R. Karatas, Global behavior of a higher order difference equation , Inter. J. Contemp. Math. Sci., 12 (3) (2017), 133-138.
- [38] M. Gumus, R. Abo-Zeid, O . Ocalan, Dynamical behavior of a third-order difference equation with arbitrary powers,
Kyungpook Math. J., 57 (2017), 251-263.
- [39] E. M. Elsayed, Dynamics and behavior of a higher order rational difference equation, J. Nonlinear Sci. App., 9 (4) (2016),
1463-1474.
- [40] M. R. S. Kulenovic, G. Ladas,N. R. Prokup, A rational difference Equation, Comput. Math. Appl., 41 (2001), 671-678.
- [41] E. M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear
Dynam., 79 (1) (2015), 241-250.
- [42] M. A. Al-Shabi, R. Abo-Zeid, Global asymptotic stability of a higher order difference equation, Appl. Math. Sci., 4(17)
(2010), 839-847.
- [43] A. M. Amleh, E. Drymonis, Eventual Monotonicity in Nonlinear Difference Equation, International Journal of Difference
Equation, 11 (2) (2016), 123-137.
- [44] S. Nirmaladevi, N. Karthikeyan, Dynamics and behavior of higher order nonlinear rational difference equation, IJARIIE,
3 (4) (2017), 2395-4396.
- [45] E. M. Elsayed, H. El-Metwally, Global Behavior and periodicity of some difference equations, J. Comput. Anal. Appl, 19
(2) (2015), 298-309.
- [46] M. Akbar, N. Ali, The improved F-expansion method with Riccati equation and its applications in mathematical physics,
Cogent Math., 4 (1) (2017), 1-19.
Year 2019,
Volume: 2 Issue: 1, 9 - 21, 22.03.2019
Marwa M. Alzubaidi
,
Elsayed M. Elsayed
References
- [1] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer
Academic Publishers, Dordrecht, 1993.
- [2] A. Asiri, M. M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput.
Anal. Appl., 24 (3) (2018), 444-453.
- [3] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures,
Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004.
- [4] Q. Din, Global Stability and Neimark-Sacker bifurcation of a host-parasitoid model, Int. J. Syst. Sct., 48 (6) (2017),
1194-1202.
- [5] Q. Din, E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software, 2 (2014),
89–103.
- [6] Q. Din, M. A. Khan, Global stability of a system of exponential difference equations, CMMPG, 1 (2) (2016), 71-85.
- [7] Q. Din, M. A. Khan, U. Saeed, Qualitative behaviour of generalised Beddington model, Zeitschrift f¨ur Naturforschung A,
71 (2) (2016), 145-155.
- [8] E. M. Elabbasy, A. A. Elsadany, S. Ibrahim, Qualitative behavior of rational difference equations of Higher Order, Malaya
J. Mat., 3 (4) (2015), 530–539.
- [9] H. El-Metwally, E. M. Elsayed, Qualitative Behavior of some rational difference equations, J. Comput. Anal. Appl., 20 (2)
(2016), 226-236.
- [10] M. A. El-Moneam, On The dynamics of the solutions of the rational recursive sequences, Brit. J. Math. Comput. Sci., 5
(2015), 654–665.
- [11] M. A. El-Moneam, S. O. Alamoudy, On study of the asymptotic behavior of some rational difference equations, DCDIS, A:
Mathematical Analysis, 22 (2015), 157-176.
- [12] E. M. Elsayed, On the solutions and periodicity of some rational systems of difference equations, B. Math. Soc. Sci. Math.,
60 (108) (2) (2017), 159–171.
- [13] E. M. Elsayed, A. Khaliq, Global attractivity and periodicity behavior of a recursive sequence, J. Comput. Anal. Appl., 22
(2) (2017), 369-379.
- [14] E. M. Elsayed, A. M. Ahmed, Dynamics of a three-dimensional systems of rational difference equations, Math. Method
Appl. Sci., 39 (5) (2016), 1026–1038.
- [15] E. M. Elsayed, A. Alghamdi, Dynamics and global stability of higher order nonlinear difference equation, J. Comput.
Anal. Appl., 21 (3) (2016), 493-503.
- [16] E. M. Elsayed, M. M. El-Dessoky, Dynamics and global behavior for a fourth-order rational difference equation, Hacet. J.
Math. Stat., 42 (5) (2013), 479-494.
- [17] E. M. Elsayed, M. Ghazel, A. E. Matouk, Dynamical analysis of the rational difference equation $x_{n+1}=Cx_{n-3}/(A+Bx_{n-1}
x_{n-3})$, J. Comput. Anal. Appl, 23 (3) (2017), 496-507.
- [18] E. M. Elsayed, T. F. Ibrahim, Solutions and periodicity of a rational recursive sequences of order five, B. Malaysian Math.
Sci. Soc., 38 (1) (2015), 95-112.
- [19] E. M. Elsayed, T. F. Ibrahim, Periodicity and Solutions for Some Systems of Nonlinear Rational Difference Equations,
Hacet. J. Math. Stat., 44 (6) (2015), 1361–1390.
- [20] M. Erdogan, K. Uslu, Behavior of a Nonlinear Difference Equation $x_{n+1}=\dfrac{1-x_{n}}{A+\underset{i=1}{\overset{k}{\sum}}x_{n-i}},$; Journal of Life Sciences, 10 (2016), 215-219.
- [21] T. F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., 16 (2014),
552-564.
- [22] T. F. Ibrahim, Solving a class of third-order max-type difference equations, DCDIS, Series A:Mathematical Analysis ,
21(2014), 333-342.
- [23] T. F. Ibrahim, Closed form expression of tractable semi-max-type two-dimensional system of difference equations with
variable coefficients, JOEMS, 24 (4) (2016), 538-544.
- [24] T. F. Ibrahim , M. A. El-Moneam, Global stability of a higher-order difference equation, Iran. J. Sci. Technol. A , 1 (41)
(2017), 51-58
- [25] R. Karatas, C. Cinar, D. Simsek, On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5}},\ $
; Int. J. Contemp. Math. Sci., 1 (10) (2006) 495 500.
- [26] A. Q. Khan, Q. Din, M. N. Qureshi, T. F. Ibrahim, Global behavior of an anti-competitive system of fourth-order rational
difference equations, Computational Ecology and Software, 2014, 4(1).
- [27] K. Liu, P. Li, F. Han, W. Zhong, Global dynamics of nonlinear difference equation $x_{n+1}=A+x_{n}/x_{n-1}x_{n-2}$, J. Comput.
Anal. Appl., 24 (6) (2018), 1125-1132.
- [28] R. Mostafaei, N. Rastegar, On a recurrence relation, QScience Connect, 10 (2014), 1-11.
- [29] U. Saeed, M. Ozair, T. Hussain, Q. Din, Fractional-order vector-host disease model, DCDIS, Series B: Applications &
Algorithms, 24 (2017), 97-111.
- [30] H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic
Publishers, Dordrecht, 2003.
- [31] D. T. Tollou, Y. Yazlik, N. Taskara, Behavior of positive solutions of a difference equation, J. Appl. Math. & Informatics,
35 (3-4) (2017), 217 - 230.
- [32] N. Touafek, On a second order rational difference equation, Hacet. J. Math. Stat., 41 (6) (2012), 867–874.
- [33] C. Wang, M. Hu, On the solutions of a rational recursive sequence, JMI, 1 (2013), 25-33.
- [34] C. Y. Wang, X. J. Fang, R. Li, On the dynamics of a certain four-order fractional difference equations, J. Comput. Anal.
Appl., 22 (5) (2017), 968-976.
- [35] Y. Yazlik, E. M. Elsayed, N. Taskara, On the behaviour of the solutions of difference equation systems, J. Comput. Anal.
Appl., 16 (5) (2014), 932–941.
- [36] E. M. E. Zayed, Qualitative behavior of the rational recursive sequence $x_{n+1}=Ax_{n}+Bx_{n-k}+\dfrac{p+x_{n-k}}{qx_{n}+x_{n-k}
}$ , Inter. J. Adv. Math., 1 (1) (2014), 44-55.
- [37] R. Karatas, Global behavior of a higher order difference equation , Inter. J. Contemp. Math. Sci., 12 (3) (2017), 133-138.
- [38] M. Gumus, R. Abo-Zeid, O . Ocalan, Dynamical behavior of a third-order difference equation with arbitrary powers,
Kyungpook Math. J., 57 (2017), 251-263.
- [39] E. M. Elsayed, Dynamics and behavior of a higher order rational difference equation, J. Nonlinear Sci. App., 9 (4) (2016),
1463-1474.
- [40] M. R. S. Kulenovic, G. Ladas,N. R. Prokup, A rational difference Equation, Comput. Math. Appl., 41 (2001), 671-678.
- [41] E. M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear
Dynam., 79 (1) (2015), 241-250.
- [42] M. A. Al-Shabi, R. Abo-Zeid, Global asymptotic stability of a higher order difference equation, Appl. Math. Sci., 4(17)
(2010), 839-847.
- [43] A. M. Amleh, E. Drymonis, Eventual Monotonicity in Nonlinear Difference Equation, International Journal of Difference
Equation, 11 (2) (2016), 123-137.
- [44] S. Nirmaladevi, N. Karthikeyan, Dynamics and behavior of higher order nonlinear rational difference equation, IJARIIE,
3 (4) (2017), 2395-4396.
- [45] E. M. Elsayed, H. El-Metwally, Global Behavior and periodicity of some difference equations, J. Comput. Anal. Appl, 19
(2) (2015), 298-309.
- [46] M. Akbar, N. Ali, The improved F-expansion method with Riccati equation and its applications in mathematical physics,
Cogent Math., 4 (1) (2017), 1-19.