Research Article
BibTex RIS Cite

Solution of Singular Integral Equations of the First Kind with Cauchy Kernel

Year 2019, Volume: 2 Issue: 1, 69 - 74, 22.03.2019
https://doi.org/10.33434/cams.454740

Abstract

In this paper an analytic method is developed for solving Cauchy type singular integral equations of the first kind, over a finite interval. Chebyshev polynomials of the first kind, $T_n(x)$, second kind, $U_n(x)$, third kind, $V_n(x)$, and fourth kind, $W_n(x)$, corresponding to respective weight functions $W^{(1)}(x)=\frac{1}{\sqrt{1-x^2}},W^{(2)}(x)=\sqrt{1-x^2},W^{(3)}(x)=\sqrt{\frac{1+x}{1-x}},$ and $~ W^{(3)}(x)=\sqrt{\frac{1-x}{1+x}}, $ have been used to obtain the complete analytical solutions for four different cases.

References

  • [1] N. I. Mushkelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953.
  • [2] F.D. Gakhov, Boundary Value Problems, Addison-Wesley, 1966.
  • [3] P. A. Martin, F. S. Rizzo, On boundary integral equations for crack problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 421 (1989), 341-345.
  • [4] S. Kim, Solving singular integral equations using Gaussian quadrature and overdetermined system, Appl. Math. Comput., 35 (1998), 63-71.
  • [5] A. Chakrabarti, V. G. Berghe, Approximate solution of singular integral equations, Appl. Math. Lett., 17 (2004), 553-559.
  • [6] M. M. Panja, B. N. Mandal, Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function, J. Comput. Appl. Math., 241 (2013), 130-142.
  • [7] M. Abdulkawi, Solution of Cauchy type singular integral equations of first kind by using differential transform method, Appl. Math. Model., 39 (2015), 2107-2118.
  • [8] S. Mondal, B. N. Mandal, A note on the solution of a simple hypersingular integral equation, Glob. J. Pure Appl. Math., 13 (2017), 1959-1964.
  • [9] J.C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, J. Comput. Appl. Math., 49 (1993), 169-178.
  • [10] Z. K. Eshkuvatov, N. M. A. Nik Long, M. Abdulkawi, Approximate solution of singular integral equations of the first kind with Cauchy kernel, Appl. Math. Lett., 22 (2009), 651-657.
Year 2019, Volume: 2 Issue: 1, 69 - 74, 22.03.2019
https://doi.org/10.33434/cams.454740

Abstract

References

  • [1] N. I. Mushkelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953.
  • [2] F.D. Gakhov, Boundary Value Problems, Addison-Wesley, 1966.
  • [3] P. A. Martin, F. S. Rizzo, On boundary integral equations for crack problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 421 (1989), 341-345.
  • [4] S. Kim, Solving singular integral equations using Gaussian quadrature and overdetermined system, Appl. Math. Comput., 35 (1998), 63-71.
  • [5] A. Chakrabarti, V. G. Berghe, Approximate solution of singular integral equations, Appl. Math. Lett., 17 (2004), 553-559.
  • [6] M. M. Panja, B. N. Mandal, Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function, J. Comput. Appl. Math., 241 (2013), 130-142.
  • [7] M. Abdulkawi, Solution of Cauchy type singular integral equations of first kind by using differential transform method, Appl. Math. Model., 39 (2015), 2107-2118.
  • [8] S. Mondal, B. N. Mandal, A note on the solution of a simple hypersingular integral equation, Glob. J. Pure Appl. Math., 13 (2017), 1959-1964.
  • [9] J.C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, J. Comput. Appl. Math., 49 (1993), 169-178.
  • [10] Z. K. Eshkuvatov, N. M. A. Nik Long, M. Abdulkawi, Approximate solution of singular integral equations of the first kind with Cauchy kernel, Appl. Math. Lett., 22 (2009), 651-657.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Subhabrata Mondal

B.n. Mandal This is me

Publication Date March 22, 2019
Submission Date August 20, 2018
Acceptance Date January 22, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Mondal, S., & Mandal, B. (2019). Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Communications in Advanced Mathematical Sciences, 2(1), 69-74. https://doi.org/10.33434/cams.454740
AMA Mondal S, Mandal B. Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Communications in Advanced Mathematical Sciences. March 2019;2(1):69-74. doi:10.33434/cams.454740
Chicago Mondal, Subhabrata, and B.n. Mandal. “Solution of Singular Integral Equations of the First Kind With Cauchy Kernel”. Communications in Advanced Mathematical Sciences 2, no. 1 (March 2019): 69-74. https://doi.org/10.33434/cams.454740.
EndNote Mondal S, Mandal B (March 1, 2019) Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Communications in Advanced Mathematical Sciences 2 1 69–74.
IEEE S. Mondal and B. Mandal, “Solution of Singular Integral Equations of the First Kind with Cauchy Kernel”, Communications in Advanced Mathematical Sciences, vol. 2, no. 1, pp. 69–74, 2019, doi: 10.33434/cams.454740.
ISNAD Mondal, Subhabrata - Mandal, B.n. “Solution of Singular Integral Equations of the First Kind With Cauchy Kernel”. Communications in Advanced Mathematical Sciences 2/1 (March 2019), 69-74. https://doi.org/10.33434/cams.454740.
JAMA Mondal S, Mandal B. Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Communications in Advanced Mathematical Sciences. 2019;2:69–74.
MLA Mondal, Subhabrata and B.n. Mandal. “Solution of Singular Integral Equations of the First Kind With Cauchy Kernel”. Communications in Advanced Mathematical Sciences, vol. 2, no. 1, 2019, pp. 69-74, doi:10.33434/cams.454740.
Vancouver Mondal S, Mandal B. Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Communications in Advanced Mathematical Sciences. 2019;2(1):69-74.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..