Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 8, 25.03.2020
https://doi.org/10.33434/cams.594690

Abstract

References

  • [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
  • [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2), (2015), 1-15.
  • [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
  • [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
  • [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
  • [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
  • [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017), 1815-1824.
  • [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019), 413-425.
  • [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
  • [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
  • [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
  • [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.

Smarandache Curves of the Evolute Curve According to Sabban Frame

Year 2020, Volume: 3 Issue: 1, 1 - 8, 25.03.2020
https://doi.org/10.33434/cams.594690

Abstract

The aim of this paper is to define Smarandache curves according to the Sabban frame belonging to the unit Darboux vector of spherical indicatrix curve of the evolute curve. Also, we calculate the geodesic curvatures of these curves. Finally, the results are expressed depending on the involute curve.

References

  • [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
  • [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2), (2015), 1-15.
  • [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
  • [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
  • [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
  • [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
  • [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017), 1815-1824.
  • [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019), 413-425.
  • [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
  • [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
  • [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
  • [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Süleyman Şenyurt 0000-0003-1097-5541

Yasin Altun This is me 0000-0002-6977-4958

Publication Date March 25, 2020
Submission Date July 21, 2019
Acceptance Date January 23, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Şenyurt, S., & Altun, Y. (2020). Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences, 3(1), 1-8. https://doi.org/10.33434/cams.594690
AMA Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. March 2020;3(1):1-8. doi:10.33434/cams.594690
Chicago Şenyurt, Süleyman, and Yasin Altun. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences 3, no. 1 (March 2020): 1-8. https://doi.org/10.33434/cams.594690.
EndNote Şenyurt S, Altun Y (March 1, 2020) Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences 3 1 1–8.
IEEE S. Şenyurt and Y. Altun, “Smarandache Curves of the Evolute Curve According to Sabban Frame”, Communications in Advanced Mathematical Sciences, vol. 3, no. 1, pp. 1–8, 2020, doi: 10.33434/cams.594690.
ISNAD Şenyurt, Süleyman - Altun, Yasin. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences 3/1 (March 2020), 1-8. https://doi.org/10.33434/cams.594690.
JAMA Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. 2020;3:1–8.
MLA Şenyurt, Süleyman and Yasin Altun. “Smarandache Curves of the Evolute Curve According to Sabban Frame”. Communications in Advanced Mathematical Sciences, vol. 3, no. 1, 2020, pp. 1-8, doi:10.33434/cams.594690.
Vancouver Şenyurt S, Altun Y. Smarandache Curves of the Evolute Curve According to Sabban Frame. Communications in Advanced Mathematical Sciences. 2020;3(1):1-8.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..