Year 2020,
Volume: 3 Issue: 1, 1 - 8, 25.03.2020
Süleyman Şenyurt
,
Yasin Altun
References
- [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
- [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2),
(2015), 1-15.
- [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
- [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
- [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
- [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
- [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017),
1815-1824.
- [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019),
413-425.
- [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria
Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
- [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of
Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
- [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius
Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
- [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.
Smarandache Curves of the Evolute Curve According to Sabban Frame
Year 2020,
Volume: 3 Issue: 1, 1 - 8, 25.03.2020
Süleyman Şenyurt
,
Yasin Altun
Abstract
The aim of this paper is to define Smarandache curves according to the Sabban frame belonging to the unit Darboux vector of spherical indicatrix curve of the evolute curve. Also, we calculate the geodesic curvatures of these curves. Finally, the results are expressed depending on the involute curve.
References
- [1] A.T. Ali, Special Smarandache Curves in the Euclidian Space, International J.Math. Combin., 2, (2010), 30-36.
- [2] A. Çalışkan, S. Şenyurt, Smarandache Curves In Terms of Sabban Frame of Spherical Indicatrix Curves, Gen. Math. Notes, 31(2),
(2015), 1-15.
- [3] A. Sabuncuoğlu, Differential Geometry, Nobel Publications, 2006.
- [4] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.
- [5] K. Taşköprü, M. Tosun, Smarandache Curves on S2, Bol. Soc. Paran. Mat. 32(1), (2014), 51-59.
- [6] M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski space-time, International J.Math. Combin., 3, (2008), 51-55.
- [7] S. Şenyurt, C. Cevahir, Y. Altun, On Spatial Quaternionic Involute Curve A New View, Adv. Appl. Clifford Algebras, 27(2), (2017),
1815-1824.
- [8] S. Şenyurt, C. Cevahir, Y. Altun, H. Kocayi˘git, On the Sabban frame belonging to involute-evolute curves, Thermal Science, 23, (2019),
413-425.
- [9] K. E. Özen, M. Tosun, M. Akyiğit, Siacci’s theorem according to Darboux frame, Analele Universitatii Ovidius Constanta-Seria
Matematica, 25(3), (2017), 155–165. DOI:10.1515/auom-2017-0042.
- [10] K. E. Özen, F. S. Dündar, M. Tosun, An alternative approach to jerk in motion along a space curve with applications, Journal of
Theoretical and Applied Mechanics, 57(2), (2019), 435–444. DOI:10.15632/jtam-pl/104595.
- [11] K. E. Özen, M. Güner, M. Tosun, A note on the acceleration and jerk in motion along a space curve, Analele Universitatii Ovidius
Constanta-Seria Matematica, 28(1), (2020), 151-164. DOI:10.2478/auom-2020-0011.
- [12] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of the American Mathematical Society, 57, (1951), 44-54.