Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 9 - 12, 25.03.2020
https://doi.org/10.33434/cams.627282

Abstract

References

  • [1] B. Aupetit, A Primer On Spectral Theory, Universitext, Springer-Verlag, 1991.
  • [2] H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications, Vol. 15, Birkhauser, 1985.
  • [3] R. Dautrey and Jacques-Louis Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications. Springer 2000.
  • [4] J.-C. Evard, “Conditions for a vector subspace E(t) and for a projector P(t) not to depend on t: ”, Lin. Alg. and Its Applications. 91 (1987), 121-131.
  • [5] J.-C. Evard, “On matrix functions which commute with their derivative”, Lin. Alg. and Its Applications. 68 (1985), 145-178.
  • [6] S. Goff, “Hermitian function matrices which commute with their derivative”, Lin. Alg. and Its Applications 36 (1981), 33-40.
  • [7] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
  • [8] C.S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhauser, 2012.
  • [9] F. Rellich, Perturbation Theory of Eigenvalue Problems, Institute of Mathematical Sciences, New York, 1950.

Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative

Year 2020, Volume: 3 Issue: 1, 9 - 12, 25.03.2020
https://doi.org/10.33434/cams.627282

Abstract

Spectral properties of analytic families of compact operators on a Hilbert space are studied. The results obtained are then used to establish that an analytic family of self-adjoint compact operators on a Hilbert space $\mathcal{H},$ which commute with their derivative, must be functionally commutative.

Supporting Institution

Sultan Qaboos university

References

  • [1] B. Aupetit, A Primer On Spectral Theory, Universitext, Springer-Verlag, 1991.
  • [2] H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications, Vol. 15, Birkhauser, 1985.
  • [3] R. Dautrey and Jacques-Louis Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications. Springer 2000.
  • [4] J.-C. Evard, “Conditions for a vector subspace E(t) and for a projector P(t) not to depend on t: ”, Lin. Alg. and Its Applications. 91 (1987), 121-131.
  • [5] J.-C. Evard, “On matrix functions which commute with their derivative”, Lin. Alg. and Its Applications. 68 (1985), 145-178.
  • [6] S. Goff, “Hermitian function matrices which commute with their derivative”, Lin. Alg. and Its Applications 36 (1981), 33-40.
  • [7] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
  • [8] C.S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhauser, 2012.
  • [9] F. Rellich, Perturbation Theory of Eigenvalue Problems, Institute of Mathematical Sciences, New York, 1950.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abdelaziz Maouche 0000-0003-2343-6432

Publication Date March 25, 2020
Submission Date September 30, 2019
Acceptance Date January 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Maouche, A. (2020). Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative. Communications in Advanced Mathematical Sciences, 3(1), 9-12. https://doi.org/10.33434/cams.627282
AMA Maouche A. Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative. Communications in Advanced Mathematical Sciences. March 2020;3(1):9-12. doi:10.33434/cams.627282
Chicago Maouche, Abdelaziz. “Analytic Families of Self-Adjoint Compact Operators Which Commute With Their Derivative”. Communications in Advanced Mathematical Sciences 3, no. 1 (March 2020): 9-12. https://doi.org/10.33434/cams.627282.
EndNote Maouche A (March 1, 2020) Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative. Communications in Advanced Mathematical Sciences 3 1 9–12.
IEEE A. Maouche, “Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative”, Communications in Advanced Mathematical Sciences, vol. 3, no. 1, pp. 9–12, 2020, doi: 10.33434/cams.627282.
ISNAD Maouche, Abdelaziz. “Analytic Families of Self-Adjoint Compact Operators Which Commute With Their Derivative”. Communications in Advanced Mathematical Sciences 3/1 (March 2020), 9-12. https://doi.org/10.33434/cams.627282.
JAMA Maouche A. Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative. Communications in Advanced Mathematical Sciences. 2020;3:9–12.
MLA Maouche, Abdelaziz. “Analytic Families of Self-Adjoint Compact Operators Which Commute With Their Derivative”. Communications in Advanced Mathematical Sciences, vol. 3, no. 1, 2020, pp. 9-12, doi:10.33434/cams.627282.
Vancouver Maouche A. Analytic Families of Self-Adjoint Compact Operators Which Commute with Their Derivative. Communications in Advanced Mathematical Sciences. 2020;3(1):9-12.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..