Research Article
BibTex RIS Cite

On Generalized Fibonacci Numbers

Year 2020, Volume: 3 Issue: 4, 186 - 202, 22.12.2020
https://doi.org/10.33434/cams.771023

Abstract

Fibonacci numbers and their polynomials have been generalized mainly by two ways: by maintaining the recurrence relation and varying the initial conditions, and by varying the recurrence relation and maintaining the initial conditions. In this paper, we introduce and derive various properties of $r$-sum Fibonacci numbers. The recurrence relation is maintained but initial conditions are varied. Among results obtained are Binet's formula, generating function, explicit sum formula, sum of first $n$ terms, sum of first $n$ terms with even indices, sum of first $n$ terms with odd indices, alternating sum of $n$ terms of $r-$sum Fibonacci sequence, Honsberger's identity, determinant identities and a generalized identity from which Cassini's identity, Catalan's identity and d'Ocagne's identity follow immediately.

Supporting Institution

Maseno University

References

  • [1] S. Falcon, A. Plaza, On the Fibonacci K-numbers, Chaos Solution Fractals, 32(5) (2007), 1615–1624.
  • [2] Y.K Gupta, M. Singh, O. Sikhwal, Generalized Fibonacci-Like sequence associated with Fibonacci and Lucas sequences, Turkish J. Anal. Number Theory, 2(6) (2014), 233–238.
  • [3] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly, 68(1961), 455–459.
  • [4] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fib. Quart, 3(3) (1965),161–176.
  • [5] D. Kalma, R. Mena, The Fibonacci Numbers-Exposed, Math. Mag., 2 (2002).
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wisley-Interscience Publications, New York, 2011.
  • [7] Y.K. Panwar, M. Singh, Certain properties of generalized Fibonacci sequence, Turkish J. Anal. Number Theory, 2(1) (2014), 6–8.
  • [8] G.P.S Rathore, O. Sikhwal, R. Choudhary, Generalized Fibonacci-like sequence and some identities, SCIREA J. Math., 1(1)(2016), 107–118.
  • [9] O. Sikhwal, Y. Vyas, Generalized Fibonacci-type sequence and its Properties, Int. J. Sci. Res., 5(12) (2016), 2043–2047.
  • [10] B. Singh, S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci., 5(18) (2010), 859–868.
  • [11] B. Singh, S. Bhatnagar, O. Sikhwal, Fibonacci-like sequence, Int. J. Adv. Math. Sci., 1(3)(2013), 145–151.
  • [12] M. Singh, Y. Gupta, O. Sikhwal, Identities of generalized Fibonacci-like sequence, Turkish J. Anal. Number Theory, 2(5) (2014), 170–175.
  • [13] B. Singh, O. Sikhwal, Y. K Gupta, Generalized Fibonacci-Lucas sequence, Turkish J. Anal. Number Theory, 2(6)(2014), 193–197.
  • [14] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences (OEIS), Available at http://oeis.org.
  • [15] A. Wani, G. P. S. Rathore, K. Sisodiya, On the properties of Fibonacci-Like sequence, Int. J. Math. Trends Tech., 29(2) (2016), 80–86.
Year 2020, Volume: 3 Issue: 4, 186 - 202, 22.12.2020
https://doi.org/10.33434/cams.771023

Abstract

References

  • [1] S. Falcon, A. Plaza, On the Fibonacci K-numbers, Chaos Solution Fractals, 32(5) (2007), 1615–1624.
  • [2] Y.K Gupta, M. Singh, O. Sikhwal, Generalized Fibonacci-Like sequence associated with Fibonacci and Lucas sequences, Turkish J. Anal. Number Theory, 2(6) (2014), 233–238.
  • [3] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly, 68(1961), 455–459.
  • [4] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fib. Quart, 3(3) (1965),161–176.
  • [5] D. Kalma, R. Mena, The Fibonacci Numbers-Exposed, Math. Mag., 2 (2002).
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wisley-Interscience Publications, New York, 2011.
  • [7] Y.K. Panwar, M. Singh, Certain properties of generalized Fibonacci sequence, Turkish J. Anal. Number Theory, 2(1) (2014), 6–8.
  • [8] G.P.S Rathore, O. Sikhwal, R. Choudhary, Generalized Fibonacci-like sequence and some identities, SCIREA J. Math., 1(1)(2016), 107–118.
  • [9] O. Sikhwal, Y. Vyas, Generalized Fibonacci-type sequence and its Properties, Int. J. Sci. Res., 5(12) (2016), 2043–2047.
  • [10] B. Singh, S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci., 5(18) (2010), 859–868.
  • [11] B. Singh, S. Bhatnagar, O. Sikhwal, Fibonacci-like sequence, Int. J. Adv. Math. Sci., 1(3)(2013), 145–151.
  • [12] M. Singh, Y. Gupta, O. Sikhwal, Identities of generalized Fibonacci-like sequence, Turkish J. Anal. Number Theory, 2(5) (2014), 170–175.
  • [13] B. Singh, O. Sikhwal, Y. K Gupta, Generalized Fibonacci-Lucas sequence, Turkish J. Anal. Number Theory, 2(6)(2014), 193–197.
  • [14] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences (OEIS), Available at http://oeis.org.
  • [15] A. Wani, G. P. S. Rathore, K. Sisodiya, On the properties of Fibonacci-Like sequence, Int. J. Math. Trends Tech., 29(2) (2016), 80–86.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fidel Oduol This is me 0000-0002-1228-6339

Isaac Owino Okoth

Publication Date December 22, 2020
Submission Date July 17, 2020
Acceptance Date September 29, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

APA Oduol, F., & Okoth, I. O. (2020). On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences, 3(4), 186-202. https://doi.org/10.33434/cams.771023
AMA Oduol F, Okoth IO. On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences. December 2020;3(4):186-202. doi:10.33434/cams.771023
Chicago Oduol, Fidel, and Isaac Owino Okoth. “On Generalized Fibonacci Numbers”. Communications in Advanced Mathematical Sciences 3, no. 4 (December 2020): 186-202. https://doi.org/10.33434/cams.771023.
EndNote Oduol F, Okoth IO (December 1, 2020) On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences 3 4 186–202.
IEEE F. Oduol and I. O. Okoth, “On Generalized Fibonacci Numbers”, Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 186–202, 2020, doi: 10.33434/cams.771023.
ISNAD Oduol, Fidel - Okoth, Isaac Owino. “On Generalized Fibonacci Numbers”. Communications in Advanced Mathematical Sciences 3/4 (December 2020), 186-202. https://doi.org/10.33434/cams.771023.
JAMA Oduol F, Okoth IO. On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences. 2020;3:186–202.
MLA Oduol, Fidel and Isaac Owino Okoth. “On Generalized Fibonacci Numbers”. Communications in Advanced Mathematical Sciences, vol. 3, no. 4, 2020, pp. 186-02, doi:10.33434/cams.771023.
Vancouver Oduol F, Okoth IO. On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences. 2020;3(4):186-202.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..