| APA |
Vivek, D., Elsayed, E., & K., K. (2022). On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences, 5(1), 8-11. https://doi.org/10.33434/cams.962877
|
|
| AMA |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. March 2022;5(1):8-11. doi:10.33434/cams.962877
|
|
| Chicago |
Vivek, Dvivek, Elsayed Elsayed, and Kangarajan K. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences 5, no. 1 (March 2022): 8-11. https://doi.org/10.33434/cams.962877.
|
|
| EndNote |
Vivek D, Elsayed E, K. K (March 1, 2022) On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences 5 1 8–11.
|
|
| IEEE |
D. Vivek, E. Elsayed, and K. K., “On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative”, Communications in Advanced Mathematical Sciences, vol. 5, no. 1, pp. 8–11, 2022, doi: 10.33434/cams.962877.
|
|
| ISNAD |
Vivek, Dvivek et al. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences 5/1 (March2022), 8-11. https://doi.org/10.33434/cams.962877.
|
|
| JAMA |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. 2022;5:8–11.
|
|
| MLA |
Vivek, Dvivek et al. “On Fuzzy Differential Equations With Finite Delay via $\psi$-Type Riemann-Liouville Fractional Derivative”. Communications in Advanced Mathematical Sciences, vol. 5, no. 1, 2022, pp. 8-11, doi:10.33434/cams.962877.
|
|
| Vancouver |
Vivek D, Elsayed E, K. K. On Fuzzy Differential Equations with Finite Delay via $\psi$-type Riemann-Liouville Fractional Derivative. Communications in Advanced Mathematical Sciences. 2022;5(1):8-11.
|
|