Araştırma Makalesi
BibTex RIS Kaynak Göster

On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network

Yıl 2022, Cilt: 5 Sayı: 2, 92 - 98, 30.06.2022
https://doi.org/10.33434/cams.1064713

Öz

In this work we report numerical results involving a certain Hopfield-type three-neurons network, with the hyperbolic tangent as the activation function. Specifically, we investigate a place of a two-dimensional parameter-space of
this system where typical periodic structures, the so-called shrimps, are embedded in a chaotic region. We show that these structures are organized themselves as a spiral that coil up toward a focal point, while undergo period-adding bifurcations. We also indicate the locations along this spiral in the parameter-space, where such bifurcations happen.

Destekleyen Kurum

Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico-CNPq, and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina-FAPESC, Brazilian Agencies.

Proje Numarası

0

Kaynakça

  • [1] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088–3092.
  • [2] E. Korner, R. Kupper, M. K. M. Rahman, Y. Shkuro, Neurocomputing Research Developments, Nova Science Publishers, New York, 2007.
  • [3] W. Z. Huang, Y. Huang, Chaos, bifurcations and robustness of a class of Hopfield neural networks, Int. J. Bifurcation and Chaos, 21 (2011), 885–895.
  • [4] P. F. Chen, Z. Q. Chen, and W. J. Wu, A novel chaotic system with one source and two saddle-foci in Hopfield neural networks, Chin. Phys. B, 19 (2010), 040509.
  • [5] P. Zheng, W. Tang, J. Hang, Some novel double-scroll chaotic attractors in Hopfield networks, Neurocomputing, 73 (2010), 2280–2285.
  • [6] A. C. Mathias and P. C. Rech, Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions, Neural Networks, 34 (2012), 42–45.
  • [7] P. C. Rech, Period-adding and spiral organization of the periodicity in a Hopfield neural network, Int. J. Mach. Learn. & Cyber., 6 (2015), 1–6.
  • [8] A. Wolf , J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285–317.
  • [9] C. Bonatto, J. A. C. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101 (2008), 054101.
  • [10] J. A. C. Gallas, The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows, Int. J. Bifurcation and Chaos, 20 (2010), 197–211.
  • [11] H. A. Albuquerque, P. C. Rech, Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit, Int. J. Circ. Theor. Appl., 40 (2012), 189–194.
  • [12] R. Barrio, F. Blesa, S. Serrano, Qualitative analysis of the R¨ossler equations: Bifurcations of limit cycles and chaotic attractors, Physica D, 238 (2009), 1087–1100.
  • [13] X. F. Li, Y. T. L. Andrew, Y. D. Chu, Symmetry and period-adding windows in a modified optical injection semiconductor laser model, Chin. Phys. Lett., 29 (2012), 010201.
  • [14] C. Stegemann, P. C. Rech, Organization of the dynamics in a parameter plane of a tumor growth mathematical model, Int. J. Bifurcation and Chaos, 24 (2014), 1450023.
  • [15] R. A. da Silva, P. C. Rech, Spiral periodic structures in a parameter plane of an ecological model, Appl. Math. Comput., 254 (2015), 9–13.
  • [16] P. C. Rech, Spiral organization of periodic structures in the Lorenz-Stenflo system, Phys. Scr., 91 (2016), 075201.
  • [17] A. da Silva, P. C. Rech, Numerical investigation concerning the dynamics in parameter planes of the Ehrhard-M¨uller System, Chaos Solitons Fractals, 110 (2018), 152–157.
  • [18] R. Barrio, F. Blesa, S. Serrano, A. Shilnikov, Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci, Phys. Rev. E, 84 (2011), 035201.
  • [19] R. Vitolo, P. Glendinning, J. A. C. Gallas, Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows, Phys. Rev. E, 84 (2011), 016216.
  • [20] R. Stoop, P. Benner, Y. Uwate, Real-world existence and origins of the spiral organization of shrimp-shaped domains, Phys. Rev. Lett., 105 (2010), 074102.
Yıl 2022, Cilt: 5 Sayı: 2, 92 - 98, 30.06.2022
https://doi.org/10.33434/cams.1064713

Öz

Proje Numarası

0

Kaynakça

  • [1] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088–3092.
  • [2] E. Korner, R. Kupper, M. K. M. Rahman, Y. Shkuro, Neurocomputing Research Developments, Nova Science Publishers, New York, 2007.
  • [3] W. Z. Huang, Y. Huang, Chaos, bifurcations and robustness of a class of Hopfield neural networks, Int. J. Bifurcation and Chaos, 21 (2011), 885–895.
  • [4] P. F. Chen, Z. Q. Chen, and W. J. Wu, A novel chaotic system with one source and two saddle-foci in Hopfield neural networks, Chin. Phys. B, 19 (2010), 040509.
  • [5] P. Zheng, W. Tang, J. Hang, Some novel double-scroll chaotic attractors in Hopfield networks, Neurocomputing, 73 (2010), 2280–2285.
  • [6] A. C. Mathias and P. C. Rech, Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions, Neural Networks, 34 (2012), 42–45.
  • [7] P. C. Rech, Period-adding and spiral organization of the periodicity in a Hopfield neural network, Int. J. Mach. Learn. & Cyber., 6 (2015), 1–6.
  • [8] A. Wolf , J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285–317.
  • [9] C. Bonatto, J. A. C. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101 (2008), 054101.
  • [10] J. A. C. Gallas, The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows, Int. J. Bifurcation and Chaos, 20 (2010), 197–211.
  • [11] H. A. Albuquerque, P. C. Rech, Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit, Int. J. Circ. Theor. Appl., 40 (2012), 189–194.
  • [12] R. Barrio, F. Blesa, S. Serrano, Qualitative analysis of the R¨ossler equations: Bifurcations of limit cycles and chaotic attractors, Physica D, 238 (2009), 1087–1100.
  • [13] X. F. Li, Y. T. L. Andrew, Y. D. Chu, Symmetry and period-adding windows in a modified optical injection semiconductor laser model, Chin. Phys. Lett., 29 (2012), 010201.
  • [14] C. Stegemann, P. C. Rech, Organization of the dynamics in a parameter plane of a tumor growth mathematical model, Int. J. Bifurcation and Chaos, 24 (2014), 1450023.
  • [15] R. A. da Silva, P. C. Rech, Spiral periodic structures in a parameter plane of an ecological model, Appl. Math. Comput., 254 (2015), 9–13.
  • [16] P. C. Rech, Spiral organization of periodic structures in the Lorenz-Stenflo system, Phys. Scr., 91 (2016), 075201.
  • [17] A. da Silva, P. C. Rech, Numerical investigation concerning the dynamics in parameter planes of the Ehrhard-M¨uller System, Chaos Solitons Fractals, 110 (2018), 152–157.
  • [18] R. Barrio, F. Blesa, S. Serrano, A. Shilnikov, Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci, Phys. Rev. E, 84 (2011), 035201.
  • [19] R. Vitolo, P. Glendinning, J. A. C. Gallas, Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows, Phys. Rev. E, 84 (2011), 016216.
  • [20] R. Stoop, P. Benner, Y. Uwate, Real-world existence and origins of the spiral organization of shrimp-shaped domains, Phys. Rev. Lett., 105 (2010), 074102.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Angela Da Silva Bu kişi benim

Paulo Rech

Proje Numarası 0
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 31 Ocak 2022
Kabul Tarihi 27 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Da Silva, A., & Rech, P. (2022). On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network. Communications in Advanced Mathematical Sciences, 5(2), 92-98. https://doi.org/10.33434/cams.1064713
AMA Da Silva A, Rech P. On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network. Communications in Advanced Mathematical Sciences. Haziran 2022;5(2):92-98. doi:10.33434/cams.1064713
Chicago Da Silva, Angela, ve Paulo Rech. “On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network”. Communications in Advanced Mathematical Sciences 5, sy. 2 (Haziran 2022): 92-98. https://doi.org/10.33434/cams.1064713.
EndNote Da Silva A, Rech P (01 Haziran 2022) On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network. Communications in Advanced Mathematical Sciences 5 2 92–98.
IEEE A. Da Silva ve P. Rech, “On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network”, Communications in Advanced Mathematical Sciences, c. 5, sy. 2, ss. 92–98, 2022, doi: 10.33434/cams.1064713.
ISNAD Da Silva, Angela - Rech, Paulo. “On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network”. Communications in Advanced Mathematical Sciences 5/2 (Haziran 2022), 92-98. https://doi.org/10.33434/cams.1064713.
JAMA Da Silva A, Rech P. On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network. Communications in Advanced Mathematical Sciences. 2022;5:92–98.
MLA Da Silva, Angela ve Paulo Rech. “On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network”. Communications in Advanced Mathematical Sciences, c. 5, sy. 2, 2022, ss. 92-98, doi:10.33434/cams.1064713.
Vancouver Da Silva A, Rech P. On Bifurcations Along the Spiral Organization of the Periodicity in a Hopfield Neural Network. Communications in Advanced Mathematical Sciences. 2022;5(2):92-8.

Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..