$\mathcal{I}_2$-Uniform Convergence of Double Sequences of Functions In $2$-Normed Spaces
Year 2022,
Volume: 5 Issue: 3, 150 - 160, 30.09.2022
Sevim Yegül Güzey
,
Erdinç Dündar
,
Mukaddes Arslan
Abstract
In this work, we discuss various types of $\mathcal{I}_2$-uniform convergence and equi-continuous for double sequences of functions. Also, we introduce the concepts of $\mathcal{I}_2$-uniform convergence, $\mathcal{I}_2^*$-uniform convergence, $\mathcal{I}_2$-uniformly Cauchy sequences and $\mathcal{I}_2^*$-uniformly Cauchy sequences for double sequences of functions in $2$-normed spaces. Then, we show the relationships between these new concepts.
References
-
[1] M. Arslan, E. D¨undar, I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces, Konuralp Journal of
Mathematics, 6(1) (2018), 57–62.
-
[2] M. Arslan, E. D¨undar, On I-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bulletin of
Mathematics, 42 (2018), 491–502.
-
[3] M. Arslan, E. D¨undar, Rough convergence in 2-normed spaces, Bulletin of Mathematical Analysis and Applications, 10(3)
(2018), 1–9.
-
[4] M. Arslan, E. D¨undar, On Rough Convergence in 2-Normed Spaces and Some Properties Filomat 33(16) (2019), 5077–
5086.
-
[5] V. Bala´z, J. C˘ erven˘ansky´, P. Kostyrko, T. S˘ala´t, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty
of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
-
[6] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math.
Anal. Appl. 328(1) (2007), 715-729.
-
[7] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
-
[8] P. Das, P. Kostyrko, W. Wilczy´nski, P. Malik, I and I∗-convergence of double sequences, Math. Slovaca, 58 (2008), No.
5, 605–620.
-
[9] P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008), 91–102.
-
[10] E. D¨undar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and
Applications, 3(1) (2015), 111–121.
-
[11] E. D¨undar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
-
[12] E. D¨undar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and
Applications E-notes, 3(1) (2015), 44–52.
-
[13] E. D¨undar, M. Arslan, S. Yeg¨ul, On I-Uniform convergence of sequences of functions in 2-normed spaces, Rocky
Mountain Journal of Mathematics 50(5) (2020), 1637–1646.
-
[14] E. D¨undar, U. Ulusu, N. Pancaroˇglu, Strongly I2-lacunary convergence and I2-lacunary Cauchy double sequences of
sets, The Aligarh Bulletin of Mathematisc, 35(1-2) (2016), 1-15.
-
[15] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
-
[16] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
-
[17] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148.
-
[18] S. G¨ahler, 2-normed spaces, Math. Nachr. 28 (1964), 1–43.
-
[19] F. Gezer, S. Karakus¸, I and I∗ convergent function sequences, Math. Commun. 10 (2005), 71-80.
-
[20] A. G¨okhan, M. G¨ung¨or and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum,
2(8) (2007), 365-374.
-
[21] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631–639.
-
[22] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (3) (2001), 321–329.
-
[23] M. G¨urdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1) (2004), 107–113.
-
[24] M. G¨urdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009), 257–264.
-
[25] M. G¨urdal, I. Ac¸ık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2) (2008), 349–354.
-
[26] M. G¨urdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006), 85–91.
-
[27] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange 26 (2) (2000), 669–686.
-
[28] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62(1) (2012),
49–62.
-
[29] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca 61(6) (2011), 933–940.
-
[30] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000),
513–527.
-
[31] F. Nuray, E. D¨undar, U. Ulusu, Wijsman I2-convergence of double sequences of cosed sets, Pure and Applied Mathematics
Letters, 2 (2014), 35-39.
-
[32] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Int. J.
Math. Math. Sci. 2011 (2011), 10 pages. doi:10.1155/2011/517841.
-
[33] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
-
[34] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959),
361–375.
-
[35] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008),
373–390.
-
[36] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11(5) (2007),
1477–1484.
-
[37] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput. 16(6) (2012), 1021–1027.
-
[38] U. Ulusu, F. Nuray, E. D¨undar, I-limit and I-cluster points for functions defined on amenable semigroups, Fundamental
Journal of Mathematics and Applications, 4(2) (2021), 45-48.
-
[39] S. Yeg¨ul, E. D¨undar, On Statistical convergence of sequences of functions in 2-normed spaces, Journal of Classical Analysis,
10(1) (2017), 49–57.
-
[40] S. Yeg¨ul, E. D¨undar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces,
Facta Universitatis, Series Mathematics and Informatics, 33(5) (2018), 705–719.
-
[41] S. Yeg¨ul, E. D¨undar, I2-convergence of double sequences of functions in 2-normed spaces, Universal Journal of Mathematics
and Applications 2(3) (2019) 130–137.
-
[42] S. Yeg¨ul, E. D¨undar, On I2-convergence and I2-Cauchy double sequences of functions in 2-normed spaces, Facta
Universitatis Series Mathematics and Informatics 35(3) (2020) 801–814.
Year 2022,
Volume: 5 Issue: 3, 150 - 160, 30.09.2022
Sevim Yegül Güzey
,
Erdinç Dündar
,
Mukaddes Arslan
References
-
[1] M. Arslan, E. D¨undar, I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces, Konuralp Journal of
Mathematics, 6(1) (2018), 57–62.
-
[2] M. Arslan, E. D¨undar, On I-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bulletin of
Mathematics, 42 (2018), 491–502.
-
[3] M. Arslan, E. D¨undar, Rough convergence in 2-normed spaces, Bulletin of Mathematical Analysis and Applications, 10(3)
(2018), 1–9.
-
[4] M. Arslan, E. D¨undar, On Rough Convergence in 2-Normed Spaces and Some Properties Filomat 33(16) (2019), 5077–
5086.
-
[5] V. Bala´z, J. C˘ erven˘ansky´, P. Kostyrko, T. S˘ala´t, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty
of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43–50.
-
[6] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math.
Anal. Appl. 328(1) (2007), 715-729.
-
[7] H. C¸ akallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
-
[8] P. Das, P. Kostyrko, W. Wilczy´nski, P. Malik, I and I∗-convergence of double sequences, Math. Slovaca, 58 (2008), No.
5, 605–620.
-
[9] P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008), 91–102.
-
[10] E. D¨undar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and
Applications, 3(1) (2015), 111–121.
-
[11] E. D¨undar, B. Altay, I2-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273–1281.
-
[12] E. D¨undar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and
Applications E-notes, 3(1) (2015), 44–52.
-
[13] E. D¨undar, M. Arslan, S. Yeg¨ul, On I-Uniform convergence of sequences of functions in 2-normed spaces, Rocky
Mountain Journal of Mathematics 50(5) (2020), 1637–1646.
-
[14] E. D¨undar, U. Ulusu, N. Pancaroˇglu, Strongly I2-lacunary convergence and I2-lacunary Cauchy double sequences of
sets, The Aligarh Bulletin of Mathematisc, 35(1-2) (2016), 1-15.
-
[15] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
-
[16] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
-
[17] S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148.
-
[18] S. G¨ahler, 2-normed spaces, Math. Nachr. 28 (1964), 1–43.
-
[19] F. Gezer, S. Karakus¸, I and I∗ convergent function sequences, Math. Commun. 10 (2005), 71-80.
-
[20] A. G¨okhan, M. G¨ung¨or and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum,
2(8) (2007), 365-374.
-
[21] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631–639.
-
[22] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (3) (2001), 321–329.
-
[23] M. G¨urdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1) (2004), 107–113.
-
[24] M. G¨urdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009), 257–264.
-
[25] M. G¨urdal, I. Ac¸ık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2) (2008), 349–354.
-
[26] M. G¨urdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006), 85–91.
-
[27] P. Kostyrko, T. ˘ Sal´at, W. Wilczy´nski, I-convergence, Real Anal. Exchange 26 (2) (2000), 669–686.
-
[28] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62(1) (2012),
49–62.
-
[29] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca 61(6) (2011), 933–940.
-
[30] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000),
513–527.
-
[31] F. Nuray, E. D¨undar, U. Ulusu, Wijsman I2-convergence of double sequences of cosed sets, Pure and Applied Mathematics
Letters, 2 (2014), 35-39.
-
[32] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Int. J.
Math. Math. Sci. 2011 (2011), 10 pages. doi:10.1155/2011/517841.
-
[33] E. Savas¸, M. G¨urdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
-
[34] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959),
361–375.
-
[35] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008),
373–390.
-
[36] A. S¸ ahiner, M. G¨urdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11(5) (2007),
1477–1484.
-
[37] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput. 16(6) (2012), 1021–1027.
-
[38] U. Ulusu, F. Nuray, E. D¨undar, I-limit and I-cluster points for functions defined on amenable semigroups, Fundamental
Journal of Mathematics and Applications, 4(2) (2021), 45-48.
-
[39] S. Yeg¨ul, E. D¨undar, On Statistical convergence of sequences of functions in 2-normed spaces, Journal of Classical Analysis,
10(1) (2017), 49–57.
-
[40] S. Yeg¨ul, E. D¨undar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces,
Facta Universitatis, Series Mathematics and Informatics, 33(5) (2018), 705–719.
-
[41] S. Yeg¨ul, E. D¨undar, I2-convergence of double sequences of functions in 2-normed spaces, Universal Journal of Mathematics
and Applications 2(3) (2019) 130–137.
-
[42] S. Yeg¨ul, E. D¨undar, On I2-convergence and I2-Cauchy double sequences of functions in 2-normed spaces, Facta
Universitatis Series Mathematics and Informatics 35(3) (2020) 801–814.