Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 5 Sayı: 4, 170 - 179, 30.12.2022
https://doi.org/10.33434/cams.1180773

Öz

Kaynakça

  • [1] ˙I. Akc¸a, U. E. Arslan, Categorification of algebras:2-algebras, Ikonion J. Math., Submitted.
  • [2] ˙I. Akc¸a, K. Emir , F. M. Martins, Pointed homotopy of maps between 2-crossed modules of commutative algebras, Homol. Homotopy Appl., 18(1)(2016), 99-128.
  • [3] Z. Arvasi , U. Ege , Annihilators, multipliers and crossed modules, Appl. Categ. Struct., 11 (2003), 487-506.
  • [4] J. C. Baez , A. S. Crans , Higher dimensional algebra VI: Lie 2-Algebras, Theory Appl. Categ., 12(15) (2004), 492-538.
  • [5] H. J. Baues , Combinatorial Homotopy and 4-Dimensional Complexes, Berlin etc.: Walter de Gruyter, 1991.
  • [6] R. Brown , M. Golasinski, A model structure for the homotopy theory of crossed complexes, Cah. Topologie Geom. Diff´er. Cat´egoriques, 30(1) (1989),61-82.
  • [7] R. Brown , C. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad.v. Wet, 79 (1976), 296-302.
  • [8] F. Borceux , Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
  • [9] J. G. Cabello, A. R. Garz´on, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103(3) (1995), 287-302.
  • [10] C. Ehresmann ,Categories structures, Ann. Ec. Normale Sup., 80 (1963).
  • [11] C. Elvira-Donazar, L. J. Hernandez-Paricio, Closed model categories for the n-type of spaces and simplicial sets, Math. Proc. Camb. Philos. Soc., 118(7) (1995), 93-103.
  • [12] J. W. Gray, Formal Category Theory Adjointness for 2-Categories, Lecture Notes in Math 391, Springer-Verlag, 1974.
  • [13] ˙I.˙Ic¸en , The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci, Univ. Ank. Series A1, 49 (2000), 39-48.
  • [14] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst., 159 (2012), 57-64.
  • [15] J. L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Alg., 24 (1982), 179-202.
  • [16] A. S. T. Lue, Semi-complete crossed modules and holomorphs of groups, Bull. London Math. Soc., 11 (1979), 8-16.
  • [17] S. Mac Lane, Extension and obstructures for rings, Illinois J. Math., 121 (1958), 316-345.
  • [18] K. J. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129-146.
  • [19] T. Porter, Some categorical results in the theory of crossed modules in commutative algebras, J. Algebra, 109 (1987), 415-429.
  • [20] T. Porter , The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology, http://ncatlab.org/timporter/files/menagerie10.pdf

Homotopies of 2-Algebra Morphisms

Yıl 2022, Cilt: 5 Sayı: 4, 170 - 179, 30.12.2022
https://doi.org/10.33434/cams.1180773

Öz

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy for 2-algebras and we explore the relations of crossed module homotopy and 2-algebra homotopy.

Kaynakça

  • [1] ˙I. Akc¸a, U. E. Arslan, Categorification of algebras:2-algebras, Ikonion J. Math., Submitted.
  • [2] ˙I. Akc¸a, K. Emir , F. M. Martins, Pointed homotopy of maps between 2-crossed modules of commutative algebras, Homol. Homotopy Appl., 18(1)(2016), 99-128.
  • [3] Z. Arvasi , U. Ege , Annihilators, multipliers and crossed modules, Appl. Categ. Struct., 11 (2003), 487-506.
  • [4] J. C. Baez , A. S. Crans , Higher dimensional algebra VI: Lie 2-Algebras, Theory Appl. Categ., 12(15) (2004), 492-538.
  • [5] H. J. Baues , Combinatorial Homotopy and 4-Dimensional Complexes, Berlin etc.: Walter de Gruyter, 1991.
  • [6] R. Brown , M. Golasinski, A model structure for the homotopy theory of crossed complexes, Cah. Topologie Geom. Diff´er. Cat´egoriques, 30(1) (1989),61-82.
  • [7] R. Brown , C. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad.v. Wet, 79 (1976), 296-302.
  • [8] F. Borceux , Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
  • [9] J. G. Cabello, A. R. Garz´on, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103(3) (1995), 287-302.
  • [10] C. Ehresmann ,Categories structures, Ann. Ec. Normale Sup., 80 (1963).
  • [11] C. Elvira-Donazar, L. J. Hernandez-Paricio, Closed model categories for the n-type of spaces and simplicial sets, Math. Proc. Camb. Philos. Soc., 118(7) (1995), 93-103.
  • [12] J. W. Gray, Formal Category Theory Adjointness for 2-Categories, Lecture Notes in Math 391, Springer-Verlag, 1974.
  • [13] ˙I.˙Ic¸en , The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci, Univ. Ank. Series A1, 49 (2000), 39-48.
  • [14] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst., 159 (2012), 57-64.
  • [15] J. L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Alg., 24 (1982), 179-202.
  • [16] A. S. T. Lue, Semi-complete crossed modules and holomorphs of groups, Bull. London Math. Soc., 11 (1979), 8-16.
  • [17] S. Mac Lane, Extension and obstructures for rings, Illinois J. Math., 121 (1958), 316-345.
  • [18] K. J. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129-146.
  • [19] T. Porter, Some categorical results in the theory of crossed modules in commutative algebras, J. Algebra, 109 (1987), 415-429.
  • [20] T. Porter , The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology, http://ncatlab.org/timporter/files/menagerie10.pdf
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

İbrahim Akça

Ummahan Ege Arslan

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 27 Eylül 2022
Kabul Tarihi 21 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 4

Kaynak Göster

APA Akça, İ., & Ege Arslan, U. (2022). Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences, 5(4), 170-179. https://doi.org/10.33434/cams.1180773
AMA Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. Aralık 2022;5(4):170-179. doi:10.33434/cams.1180773
Chicago Akça, İbrahim, ve Ummahan Ege Arslan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences 5, sy. 4 (Aralık 2022): 170-79. https://doi.org/10.33434/cams.1180773.
EndNote Akça İ, Ege Arslan U (01 Aralık 2022) Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences 5 4 170–179.
IEEE İ. Akça ve U. Ege Arslan, “Homotopies of 2-Algebra Morphisms”, Communications in Advanced Mathematical Sciences, c. 5, sy. 4, ss. 170–179, 2022, doi: 10.33434/cams.1180773.
ISNAD Akça, İbrahim - Ege Arslan, Ummahan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences 5/4 (Aralık 2022), 170-179. https://doi.org/10.33434/cams.1180773.
JAMA Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. 2022;5:170–179.
MLA Akça, İbrahim ve Ummahan Ege Arslan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences, c. 5, sy. 4, 2022, ss. 170-9, doi:10.33434/cams.1180773.
Vancouver Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. 2022;5(4):170-9.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.