Some Relations between Stieltjes Transform and Hankel Transform with Applications
Yıl 2023,
Cilt: 6 Sayı: 1, 60 - 66, 31.03.2023
Virendra Kumar
Öz
In the present paper four theorems connecting Stieltjes transform and Hankel transform are established. The theorems are general in nature. Four integral formulae involving special functions are obtained with the help of these theorems. Otherwise it is very difficult to evaluate such type of integrals. Other several integrals may be evaluated with the help of these theorems.
Destekleyen Kurum
There is no supporting institution
Kaynakça
- [1] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Proc. Glasgow Math. Assoc., 5(3) (1962), 114-115.
- [2] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Math. Japon., 10 (1965), 84-89.
- [3] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill Book Company, New York, 1953.
- [4] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, New York, 1954.
- [5] K. C. Sharma, Theorems relating Hankel and Meijer’s Bessel transforms, Proc. Glasgow Math. Assoc., 6 (1963), 107–112.
- [6] K. C. Gupta, S. M. Agrawal, Unified theorems involving H-function transform and Meijer Bessel function transform, Proc.
Indian Acad. Sci. (Math. Sci.), 96 (2) (1987), 125-130.
- [7] S. P . Goyal, S. K. Vasishta, Certain relations between generalized Kontorovitch-Lebdev transform and H-function
transform, Ranchi Univ. Math. Jour., 6 (1975), 95-102.
- [8] S. P. Goyal, R. M. Jain, Certain results for two-dimensional Laplace transform with applications, Proc. Nat. Acad. Sci.
India, 59(A) (III) (1989), 407-414.
- [9] L. Landau, Monotonicity and bounds for Bessel functions, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, California: June 11-13, 1999) (Warchall. H, Editor), Electron J. Differential Equations, Conf. Vol. 04(2000), 147-154.
- [10] L. J. Landau, Bessel functions: Monotonicity and bounds, Journal of the London Mathematical Society, 61(1)(2000), 197-215.
- [11] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Elementary Functions, Gordon and Breach Science Publishers, New York, 1986.
- [12] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Special Functions, Gordon and Breach Science Publishers, New York, 1986.
- [13] I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
- [14] R. K. Saxena, A relation between generalized Laplace and Hankel transforms, Math. Zeitschr., 81 (1963), 414-415
- [15] H. M. Srivastava, A relation between Meijer and generalized Hankel transforms, Math. Japon., 11 (1966), 11-13.
- [16] H. M. Srivastava, On a relation between Laplace and Hankel transforms, Matematiche (Catania), 21 (1966), 199-202.
- [17] H. M. Srivastava, O. D. Vyas, A theorem relating generalized Hankel and Whittaker transforms, Indagationes Mathematicae (Proceedings), 72(2) (1969), 140-144.
- [18] H. M. Srivastava, Some remarks on a generalization of the Stieltjes transform, Publ. Math. Debrecen, 23 (1976), 119-122.
- [19] H. M. Srivastava, V. K. Tuan, A new convolution theorem for the Stieltjes transform & its application to a class of singular
integral equations, Arch. Math. (Basel) 64(2) (1995), 144-149.
- [20] H.M.Srivastava,O.Yu ̈rekli,AtheoremonaStieltjes-typeintegraltransform&itsapplications,ComplexVariables,
Theory Appl., 28(2) (1995), 159-168.
- [21] S. Yakubovich, M. Martins, On the iterated Stieltjes transform & its convolution with application to singular integral equations, Integral Transforms Spec. Funct., 25(5) (2013), doi: 10.1080/10652469.2013.868457