Year 2023,
Volume: 6 Issue: 2, 78 - 85, 30.06.2023
Burak Oğul
,
Dağıstan Şimşek
,
Ibrahim Tarek Fawzi Abdelhamid
References
- [1] R. P. Agarwal, Difference Equations and Inequalities. 1st edition, Marcel Dekker, New York, 1992.
- [2] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, volume 256 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [3] M. A. Radin, Difference Equations for Scientists and Engineering, Interdisciplinary Difference Equations, World Scientific Publishing, October 2019.(https://doi.org/10.1142/11349)
- [4] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2), (2006), 768-774.
- [5] C. Cinar, On the positive solutions of the difference equation $\Psi_{m+1}=\frac{\Psi_{m-1}}{1+\alpha \Psi_{m} \Psi_{m-1}}$, Appl. Math. Comput., 158(3), (2004), 809-812.
- [6] A. Gelisken, On A System of Rational Difference Equations, J. Comput. Anal. Appl., 23(4), (2017), 593-606.
- [7] R. Karatas, C. Cinar, D. Simsek, On Positive Solutions of the Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-5}}{1+\Psi_{m-2}\Psi_{m-5}}$, Int. J. Contemp. Math. Sci., 10(1), (2006), 495-500.
- [8] B. Ogul, D. Şimşek, H. Ogunmez, A.S. Kurbanli, Dynamical behavior of rational difference equation $\Psi_{m+1}= \frac{\Psi_{m-17}}{\pm 1\pm \Psi_{m-2}\Psi_{m-5}\Psi_{m-8}\Psi_{m-11}\Psi_{m-14}\Psi_{m-17}}$, Bol. Soc. Mat. Mexicana, 27(49), (2021). https://doi.org/10.1007/s40590-021-00357-9
- [9] D. Simsek, B. Ogul, F. Abdullayev, Solution of the Rational Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-13}}{1+\Psi_{m-1}\Psi_{m-3}\Psi_{m-5}\Psi_{m-7}\Psi_{m-9}\Psi_{m-11}}$, Appl. Math. Nonlinear Sci., 5(1), (2020), 485-494.
- [10] I. Yalcinkaya, C. Cinar, On the dynamics of difference equation $\Psi_{m+1}=\frac{a \Psi_{m-k}}{b+c_{m}^{p}}$, Fasciculi Mathematici, 42, (2009), 141-148.
- [11] T. F. Ibrahim, A. Q. Khan, Forms of Solutions for Some Two-Dimensional Systems of Rational Partial Recursion Equations, Math. Probl. Eng., 2021, Article ID 9966197, 10 pages, 2021. https://doi.org/10.1155/2021/9966197
- [12] A. Ghezal, Note on a rational system of $\left (4k+ 4\right)$-order difference equations: periodic solution and convergence., J. Appl. Math. Comput., 2022, (2022), 1-9.
- [13] A. Q. Khan, H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dyn. Nat. Soc., (2021).
- [14] M. Rahaman, S. P. Mondal, E. A. Algehyne, A. Biswas, S. Alam, A method for solving linear difference equation in Gaussian fuzzy environments, Granular Comput., 7(1), (2021), 63-76.
- [15] S. Stevic, A note on periodic character of a higher order difference equation, Rostock. Math. Kolloq., 61, (2006), 2-30.
- [16] S. Stevic, Iricanin, B., Kosmala, W., Smarda, Z., On a nonlinear second-order difference equation, J. Inequal. Appl., 2022(1), (2022).
- [17] Y. Soykan, E. Tas¸demir, M. G¨ocen, Binomial transform of the generalized third-order Jacobsthal sequence, Asian-Eur. J. Math., (2022).
- [18] N. Touafek, E. M. Elsayed, On The Solution of some Difference Equations, Hokkaido Math. J., 44(1), 29-45, (2015).
A Qualitative Investigation of the Solution of the Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1} \left( \pm1\pm \Psi_{m-3}\Psi_{m-5} \right) }$
Year 2023,
Volume: 6 Issue: 2, 78 - 85, 30.06.2023
Burak Oğul
,
Dağıstan Şimşek
,
Ibrahim Tarek Fawzi Abdelhamid
Abstract
We explore the dynamics of adhering to rational difference formula
\begin{equation*}
\Psi_{m+1}=\frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1} \left( \pm1\pm \Psi_{m-3}\Psi_{m-5} \right) } \quad m \in \mathbb{N}_{0}
\end{equation*}
where the initials $\Psi_{-5}$, $\Psi_{-4}$, $\Psi_{-3}$,$\Psi_{-2}$, $\Psi_{-1}$, $\Psi_{0}$ are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. We also give examples and solution diagrams for certain particular instances.
References
- [1] R. P. Agarwal, Difference Equations and Inequalities. 1st edition, Marcel Dekker, New York, 1992.
- [2] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, volume 256 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [3] M. A. Radin, Difference Equations for Scientists and Engineering, Interdisciplinary Difference Equations, World Scientific Publishing, October 2019.(https://doi.org/10.1142/11349)
- [4] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2), (2006), 768-774.
- [5] C. Cinar, On the positive solutions of the difference equation $\Psi_{m+1}=\frac{\Psi_{m-1}}{1+\alpha \Psi_{m} \Psi_{m-1}}$, Appl. Math. Comput., 158(3), (2004), 809-812.
- [6] A. Gelisken, On A System of Rational Difference Equations, J. Comput. Anal. Appl., 23(4), (2017), 593-606.
- [7] R. Karatas, C. Cinar, D. Simsek, On Positive Solutions of the Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-5}}{1+\Psi_{m-2}\Psi_{m-5}}$, Int. J. Contemp. Math. Sci., 10(1), (2006), 495-500.
- [8] B. Ogul, D. Şimşek, H. Ogunmez, A.S. Kurbanli, Dynamical behavior of rational difference equation $\Psi_{m+1}= \frac{\Psi_{m-17}}{\pm 1\pm \Psi_{m-2}\Psi_{m-5}\Psi_{m-8}\Psi_{m-11}\Psi_{m-14}\Psi_{m-17}}$, Bol. Soc. Mat. Mexicana, 27(49), (2021). https://doi.org/10.1007/s40590-021-00357-9
- [9] D. Simsek, B. Ogul, F. Abdullayev, Solution of the Rational Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-13}}{1+\Psi_{m-1}\Psi_{m-3}\Psi_{m-5}\Psi_{m-7}\Psi_{m-9}\Psi_{m-11}}$, Appl. Math. Nonlinear Sci., 5(1), (2020), 485-494.
- [10] I. Yalcinkaya, C. Cinar, On the dynamics of difference equation $\Psi_{m+1}=\frac{a \Psi_{m-k}}{b+c_{m}^{p}}$, Fasciculi Mathematici, 42, (2009), 141-148.
- [11] T. F. Ibrahim, A. Q. Khan, Forms of Solutions for Some Two-Dimensional Systems of Rational Partial Recursion Equations, Math. Probl. Eng., 2021, Article ID 9966197, 10 pages, 2021. https://doi.org/10.1155/2021/9966197
- [12] A. Ghezal, Note on a rational system of $\left (4k+ 4\right)$-order difference equations: periodic solution and convergence., J. Appl. Math. Comput., 2022, (2022), 1-9.
- [13] A. Q. Khan, H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dyn. Nat. Soc., (2021).
- [14] M. Rahaman, S. P. Mondal, E. A. Algehyne, A. Biswas, S. Alam, A method for solving linear difference equation in Gaussian fuzzy environments, Granular Comput., 7(1), (2021), 63-76.
- [15] S. Stevic, A note on periodic character of a higher order difference equation, Rostock. Math. Kolloq., 61, (2006), 2-30.
- [16] S. Stevic, Iricanin, B., Kosmala, W., Smarda, Z., On a nonlinear second-order difference equation, J. Inequal. Appl., 2022(1), (2022).
- [17] Y. Soykan, E. Tas¸demir, M. G¨ocen, Binomial transform of the generalized third-order Jacobsthal sequence, Asian-Eur. J. Math., (2022).
- [18] N. Touafek, E. M. Elsayed, On The Solution of some Difference Equations, Hokkaido Math. J., 44(1), 29-45, (2015).