This paper explores the existence of solutions for non-local coupled semi-linear differential equations involving $\psi$-Caputo differential derivatives for an arbitrary $l\in (0,1)$. We use topological degree theory to condense maps and establish the existence of solutions. This theory allows us to relax the criteria of strong compactness, making it applicable to semilinear equations, which is uncommon. Additionally, we provide an example to demonstrate the practical application of our theoretical result.
$\psi$-Caputo differential derivatives Coupled semilinear differential equations Topological degree method
This paper explores the existence of solutions for non-local coupled semi-linear differential equations involving $\psi$-Caputo differential derivatives for an arbitrary $l\in (0,1)$. We use topological degree theory to condense maps and establish the existence of solutions. This theory allows us to relax the criteria of strong compactness, making it applicable to semilinear equations, which is uncommon. Additionally, we provide an example to demonstrate the practical application of our theoretical result.
$\psi$-Caputo differential derivatives Coupled semilinear differential equations Topological degree method
Birincil Dil | İngilizce |
---|---|
Konular | Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler, Uygulamalı Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 29 Eylül 2024 |
Yayımlanma Tarihi | 29 Eylül 2024 |
Gönderilme Tarihi | 25 Şubat 2024 |
Kabul Tarihi | 21 Ağustos 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: 3 |
CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.