Research Article
BibTex RIS Cite

Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations

Year 2024, Volume: 7 Issue: 4, 187 - 198
https://doi.org/10.33434/cams.1556314

Abstract

This paper examines the existence, uniqueness, and Ulam-Hyers stability of solutions to nonlinear $\mho$-fractional differential equations with boundary conditions with a $\mho$-Caputo fractional derivative. The acquired results for the suggested problem are validated using a novel technique and minimum assumptions about the function $f$. The analysis reduces the problem to a similar integral equation and uses Banach and Sadovskii fixed point theorems to reach the desired findings. Finally, the inquiry is demonstrated by illustrative example to validate the theoretical findings.

References

  • [1] A. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59(3) (2010), 1095-1100.
  • [2] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41(1) (2018), 336-352.
  • [3] R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19(2) (2016), 290-318. https://doi.org/10.1515/fca-2016-0017.
  • [4] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [5] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442.
  • [6] A. P. Agarwal, S. K. Ntouyas, B. Ahmad, A. K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Differential Equations, 2016(92) (2016), 1-15.
  • [7] S. Zhang, Existence of solutions for a boundary value problem of fractional order, Acta Math. Sci., 26(2) (2006), 220-228.
  • [8] M. Benchohra, S. Hamani, S. K. Ntouyas, Existence for differential equations with fractional order, Surveys Math. Appl., 3 (2008), 1-12.
  • [9] M. Aydin, N. I. Mahmudov, f-Caputo type time-delay Langevin equations with two general fractional orders, Math. Methods Appl. Sci., 46(8) (2023), 9187-9204.
  • [10] M. Benchohra, J. E. Lazreg, Existence and Ulam-stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Univ. Babes¸-Bolyai Math., 62(1) (2017), 27-38.
  • [11] S. Song, Y. Cu, Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance, Bound. Value Probl., 2020 (2020), Article 23.
  • [12] A. Khan, K. Shah, Y. Li, T. S. Khan, Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations, J. Funct. Spaces, 2017 (2017), Article 3046013.
  • [13] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
  • [14] P. Rabinowitz, A Collection of Mathematical Problems, S. M. Ulam, Interscience, New York, 1960.
  • [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(4) (1941), 222-224.
  • [16] A. K. Anwar, S. A. Murad, Existence and Ulam stability of solutions for Caputo-Hadamard fractional differential equations, General Letters Math., 12(2) (2022), 85-95. https://doi.org/10.31559/glm2022.12.2.5.
  • [17] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
  • [18] M. Khanehgir, R. Allahyari, M. Mursaleen, H. A. Kayvanloo, On infinite systems of Caputo fractional differential inclusions with boundary conditions for convex-compact multivalued mappings, Alexandria Engineering J., 59(5) (2020), 3233-3238.
  • [19] P. M. Mohammadi Babak, M. M. Parvanah Vahid, Existence of solutions for some f-Caputo fractional differential inclusions via Wardowski-Mizoguchi-Takahashi multi-valued contractions, Filomat, 37(12) (2023), 3777-3789.
  • [20] H. Amiri Kayvanloo, H. Mehravaran, M. Mursaleen, R. Allahyari, A. Allahyari, Solvability of infinite systems of Caputo- Hadamard fractional differential equations in the triple sequence space c3(D), J. Pseudo-Differ. Oper. Appl., 15(2) (2024), Article 26.
  • [21] B. Mohammadi, V. Parvaneh, M. Mursaleen, Existence of solutions for some nonlinear g-Caputo fractional-order differential equations based on Wardowski-Mizoguchi-Takahashi contractions, J. Inequal. Appl., 2024 (1) (2024), Article 105.
  • [22] Q. Dai, R. Gao, Z. Li, et al., Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations, Adv. Differential Equations, 2020 (2020), Article ID 103.
  • [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Boston, 2006.
  • [24] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional integro-differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
Year 2024, Volume: 7 Issue: 4, 187 - 198
https://doi.org/10.33434/cams.1556314

Abstract

References

  • [1] A. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59(3) (2010), 1095-1100.
  • [2] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41(1) (2018), 336-352.
  • [3] R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19(2) (2016), 290-318. https://doi.org/10.1515/fca-2016-0017.
  • [4] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [5] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413-3442.
  • [6] A. P. Agarwal, S. K. Ntouyas, B. Ahmad, A. K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Differential Equations, 2016(92) (2016), 1-15.
  • [7] S. Zhang, Existence of solutions for a boundary value problem of fractional order, Acta Math. Sci., 26(2) (2006), 220-228.
  • [8] M. Benchohra, S. Hamani, S. K. Ntouyas, Existence for differential equations with fractional order, Surveys Math. Appl., 3 (2008), 1-12.
  • [9] M. Aydin, N. I. Mahmudov, f-Caputo type time-delay Langevin equations with two general fractional orders, Math. Methods Appl. Sci., 46(8) (2023), 9187-9204.
  • [10] M. Benchohra, J. E. Lazreg, Existence and Ulam-stability for nonlinear implicit fractional differential equations with Hadamard derivative, Studia Univ. Babes¸-Bolyai Math., 62(1) (2017), 27-38.
  • [11] S. Song, Y. Cu, Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance, Bound. Value Probl., 2020 (2020), Article 23.
  • [12] A. Khan, K. Shah, Y. Li, T. S. Khan, Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations, J. Funct. Spaces, 2017 (2017), Article 3046013.
  • [13] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
  • [14] P. Rabinowitz, A Collection of Mathematical Problems, S. M. Ulam, Interscience, New York, 1960.
  • [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(4) (1941), 222-224.
  • [16] A. K. Anwar, S. A. Murad, Existence and Ulam stability of solutions for Caputo-Hadamard fractional differential equations, General Letters Math., 12(2) (2022), 85-95. https://doi.org/10.31559/glm2022.12.2.5.
  • [17] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
  • [18] M. Khanehgir, R. Allahyari, M. Mursaleen, H. A. Kayvanloo, On infinite systems of Caputo fractional differential inclusions with boundary conditions for convex-compact multivalued mappings, Alexandria Engineering J., 59(5) (2020), 3233-3238.
  • [19] P. M. Mohammadi Babak, M. M. Parvanah Vahid, Existence of solutions for some f-Caputo fractional differential inclusions via Wardowski-Mizoguchi-Takahashi multi-valued contractions, Filomat, 37(12) (2023), 3777-3789.
  • [20] H. Amiri Kayvanloo, H. Mehravaran, M. Mursaleen, R. Allahyari, A. Allahyari, Solvability of infinite systems of Caputo- Hadamard fractional differential equations in the triple sequence space c3(D), J. Pseudo-Differ. Oper. Appl., 15(2) (2024), Article 26.
  • [21] B. Mohammadi, V. Parvaneh, M. Mursaleen, Existence of solutions for some nonlinear g-Caputo fractional-order differential equations based on Wardowski-Mizoguchi-Takahashi contractions, J. Inequal. Appl., 2024 (1) (2024), Article 105.
  • [22] Q. Dai, R. Gao, Z. Li, et al., Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations, Adv. Differential Equations, 2020 (2020), Article ID 103.
  • [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Boston, 2006.
  • [24] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional integro-differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10.
There are 24 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Pure Mathematics (Other)
Journal Section Articles
Authors

Abduljawad Anwar 0009-0007-0864-4870

Early Pub Date December 12, 2024
Publication Date
Submission Date September 26, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Anwar, A. (2024). Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations. Communications in Advanced Mathematical Sciences, 7(4), 187-198. https://doi.org/10.33434/cams.1556314
AMA Anwar A. Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations. Communications in Advanced Mathematical Sciences. December 2024;7(4):187-198. doi:10.33434/cams.1556314
Chicago Anwar, Abduljawad. “Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations With $\mho$-Caputo Fractional Differential Equations”. Communications in Advanced Mathematical Sciences 7, no. 4 (December 2024): 187-98. https://doi.org/10.33434/cams.1556314.
EndNote Anwar A (December 1, 2024) Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations. Communications in Advanced Mathematical Sciences 7 4 187–198.
IEEE A. Anwar, “Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations”, Communications in Advanced Mathematical Sciences, vol. 7, no. 4, pp. 187–198, 2024, doi: 10.33434/cams.1556314.
ISNAD Anwar, Abduljawad. “Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations With $\mho$-Caputo Fractional Differential Equations”. Communications in Advanced Mathematical Sciences 7/4 (December 2024), 187-198. https://doi.org/10.33434/cams.1556314.
JAMA Anwar A. Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations. Communications in Advanced Mathematical Sciences. 2024;7:187–198.
MLA Anwar, Abduljawad. “Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations With $\mho$-Caputo Fractional Differential Equations”. Communications in Advanced Mathematical Sciences, vol. 7, no. 4, 2024, pp. 187-98, doi:10.33434/cams.1556314.
Vancouver Anwar A. Existence and Uniqueness of Solutions for Nonlinear Fractional Differential Equations with $\mho$-Caputo Fractional Differential Equations. Communications in Advanced Mathematical Sciences. 2024;7(4):187-98.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..