Year 2025,
Volume: 22 Issue: 2, 121 - 127, 01.11.2025
Ikechukwu Otaide
,
Oghenerukevwe Usu Egborge
References
-
S. A. Salem, T. Y. Thanoon, “On solving Bratu’s type equation by perturbation Method,” Int. J. Nonlinear Anal. Appl., vol.13, no.1, pp. 2755-2763, Sep. 2021, doi:10.22075/ijnaa.2022.6000.
-
M. Zarebnia and M. Hoshyar, “Solution of Bratu-type equation via spline method,” Acta Univ. Apulensis, vol. 37, pp. 61–72, 2014.
-
A.M. Wazwaz, “The successive differentiation method for solving Bratu equation and Bratu-type equations,” Rom. J. Phys. Vol. 61, no.5-6, pp. 774–783, Sept. 2016.
-
M. Saravi, M. Hermann and D. Kaiser, “Solution of Bratu’s Equation by He’s variational Iteration Method,” Amer. J. Comput. Appl. Math., vol.3, no. 1, pp. 46-48, Mar. 2013, doi:10.5923/j.ajcam.20130301.08.
-
H.B. Fenta and G.A. Derese, “Numerical solution of second order initial value problems of Bratu-type equations using sixth order Runge-Kutta seven stages method,” Int. J. Comput. Sci. Appl. Math., vol. 5, no.1, Feb.2019, doi: 10.12962/j24775401.v5i1.3806.
-
A. Ezekiel, “New Improved Variational Homotopy Perturbation Method for Bratu-Type Problems,” Amer. J. Comput. Math., vol. 3, no. 2, pp. 110-113, Jan. 2013, doi: 10.4236/ajcm.2013.32018.
-
H. N. Hassan and M. S. Semary, “Analytic approximate solution for the Bratu’s problem by optimal homotopy analysis method,” Commun. Numerical Anal. vol. 2013, pp.1-14, Feb.2013, doi: 10.5899/2013/can-00139.
-
Y. Aregbesola, “Numerical solution of Bratu problem using the method of weighted residual,” Elect. J. South African Math. Soc., vol. 3, no. 1, pp.1-7, 2003.
-
A.M. Wazwaz, “Adomians decomposition method for a reliable treatment of the Bratu-type equations,” Appl. Math. Comput., vol.166, no. 3, pp. 652-663, Jul. 2005, doi: 10.1016/j.amc.2004.06.059.
-
Y. Changqing and H. Jianhua, “Chebyshev wavelets method for solving Bratu’s problem,” Bound. Value Prob., vol 1, 142, Jun. 2013, doi: 10.1186/1687-2770-2013-142.
-
I. J. Otaide and I. J. Ugbene, “Application of the Taylor Series Technique to the solution of Bratu Problems,” FNAS-JMNS, vol.2, no.1, pp. 19-26, Mar. 2025.
-
I.J. Otaide and I.J. Ugbene, “Step-By-Step Application of Shifted Legendre Polynomials on Numerical Assessment of Non-Linear Bratu Differential Equations,” Zamfara International Journal of Education (ZIJE), vol.4, no.5, pp. 415-420, Dec. 2024, doi: 10.5281/zenodo.15258640.
Regular Perturbation Approach to Bratu Equations with Fractional Exponent
Year 2025,
Volume: 22 Issue: 2, 121 - 127, 01.11.2025
Ikechukwu Otaide
,
Oghenerukevwe Usu Egborge
Abstract
In this paper, the regular perturbation method is employed to obtain approximate solution of Bratu differential equations with fractional exponent. Thus, comparison of numerical results is done using different values of the perturbation parameter 𝜀. It is evident that the perturbation method is an alternative approach that should be taken into consideration while resolving a variety of real-life problems in differential equations. To show the recommended approach, three test problems were considered. The maple 18 program was used to perform calculations.
References
-
S. A. Salem, T. Y. Thanoon, “On solving Bratu’s type equation by perturbation Method,” Int. J. Nonlinear Anal. Appl., vol.13, no.1, pp. 2755-2763, Sep. 2021, doi:10.22075/ijnaa.2022.6000.
-
M. Zarebnia and M. Hoshyar, “Solution of Bratu-type equation via spline method,” Acta Univ. Apulensis, vol. 37, pp. 61–72, 2014.
-
A.M. Wazwaz, “The successive differentiation method for solving Bratu equation and Bratu-type equations,” Rom. J. Phys. Vol. 61, no.5-6, pp. 774–783, Sept. 2016.
-
M. Saravi, M. Hermann and D. Kaiser, “Solution of Bratu’s Equation by He’s variational Iteration Method,” Amer. J. Comput. Appl. Math., vol.3, no. 1, pp. 46-48, Mar. 2013, doi:10.5923/j.ajcam.20130301.08.
-
H.B. Fenta and G.A. Derese, “Numerical solution of second order initial value problems of Bratu-type equations using sixth order Runge-Kutta seven stages method,” Int. J. Comput. Sci. Appl. Math., vol. 5, no.1, Feb.2019, doi: 10.12962/j24775401.v5i1.3806.
-
A. Ezekiel, “New Improved Variational Homotopy Perturbation Method for Bratu-Type Problems,” Amer. J. Comput. Math., vol. 3, no. 2, pp. 110-113, Jan. 2013, doi: 10.4236/ajcm.2013.32018.
-
H. N. Hassan and M. S. Semary, “Analytic approximate solution for the Bratu’s problem by optimal homotopy analysis method,” Commun. Numerical Anal. vol. 2013, pp.1-14, Feb.2013, doi: 10.5899/2013/can-00139.
-
Y. Aregbesola, “Numerical solution of Bratu problem using the method of weighted residual,” Elect. J. South African Math. Soc., vol. 3, no. 1, pp.1-7, 2003.
-
A.M. Wazwaz, “Adomians decomposition method for a reliable treatment of the Bratu-type equations,” Appl. Math. Comput., vol.166, no. 3, pp. 652-663, Jul. 2005, doi: 10.1016/j.amc.2004.06.059.
-
Y. Changqing and H. Jianhua, “Chebyshev wavelets method for solving Bratu’s problem,” Bound. Value Prob., vol 1, 142, Jun. 2013, doi: 10.1186/1687-2770-2013-142.
-
I. J. Otaide and I. J. Ugbene, “Application of the Taylor Series Technique to the solution of Bratu Problems,” FNAS-JMNS, vol.2, no.1, pp. 19-26, Mar. 2025.
-
I.J. Otaide and I.J. Ugbene, “Step-By-Step Application of Shifted Legendre Polynomials on Numerical Assessment of Non-Linear Bratu Differential Equations,” Zamfara International Journal of Education (ZIJE), vol.4, no.5, pp. 415-420, Dec. 2024, doi: 10.5281/zenodo.15258640.