Research Article
BibTex RIS Cite

Year 2025, Volume: 22 Issue: 2, 121 - 127, 01.11.2025

Abstract

References

  • S. A. Salem, T. Y. Thanoon, “On solving Bratu’s type equation by perturbation Method,” Int. J. Nonlinear Anal. Appl., vol.13, no.1, pp. 2755-2763, Sep. 2021, doi:10.22075/ijnaa.2022.6000.
  • M. Zarebnia and M. Hoshyar, “Solution of Bratu-type equation via spline method,” Acta Univ. Apulensis, vol. 37, pp. 61–72, 2014.
  • A.M. Wazwaz, “The successive differentiation method for solving Bratu equation and Bratu-type equations,” Rom. J. Phys. Vol. 61, no.5-6, pp. 774–783, Sept. 2016.
  • M. Saravi, M. Hermann and D. Kaiser, “Solution of Bratu’s Equation by He’s variational Iteration Method,” Amer. J. Comput. Appl. Math., vol.3, no. 1, pp. 46-48, Mar. 2013, doi:10.5923/j.ajcam.20130301.08.
  • H.B. Fenta and G.A. Derese, “Numerical solution of second order initial value problems of Bratu-type equations using sixth order Runge-Kutta seven stages method,” Int. J. Comput. Sci. Appl. Math., vol. 5, no.1, Feb.2019, doi: 10.12962/j24775401.v5i1.3806.
  • A. Ezekiel, “New Improved Variational Homotopy Perturbation Method for Bratu-Type Problems,” Amer. J. Comput. Math., vol. 3, no. 2, pp. 110-113, Jan. 2013, doi: 10.4236/ajcm.2013.32018.
  • H. N. Hassan and M. S. Semary, “Analytic approximate solution for the Bratu’s problem by optimal homotopy analysis method,” Commun. Numerical Anal. vol. 2013, pp.1-14, Feb.2013, doi: 10.5899/2013/can-00139.
  • Y. Aregbesola, “Numerical solution of Bratu problem using the method of weighted residual,” Elect. J. South African Math. Soc., vol. 3, no. 1, pp.1-7, 2003.
  • A.M. Wazwaz, “Adomians decomposition method for a reliable treatment of the Bratu-type equations,” Appl. Math. Comput., vol.166, no. 3, pp. 652-663, Jul. 2005, doi: 10.1016/j.amc.2004.06.059.
  • Y. Changqing and H. Jianhua, “Chebyshev wavelets method for solving Bratu’s problem,” Bound. Value Prob., vol 1, 142, Jun. 2013, doi: 10.1186/1687-2770-2013-142.
  • I. J. Otaide and I. J. Ugbene, “Application of the Taylor Series Technique to the solution of Bratu Problems,” FNAS-JMNS, vol.2, no.1, pp. 19-26, Mar. 2025.
  • I.J. Otaide and I.J. Ugbene, “Step-By-Step Application of Shifted Legendre Polynomials on Numerical Assessment of Non-Linear Bratu Differential Equations,” Zamfara International Journal of Education (ZIJE), vol.4, no.5, pp. 415-420, Dec. 2024, doi: 10.5281/zenodo.15258640.

Regular Perturbation Approach to Bratu Equations with Fractional Exponent

Year 2025, Volume: 22 Issue: 2, 121 - 127, 01.11.2025

Abstract

In this paper, the regular perturbation method is employed to obtain approximate solution of Bratu differential equations with fractional exponent. Thus, comparison of numerical results is done using different values of the perturbation parameter 𝜀. It is evident that the perturbation method is an alternative approach that should be taken into consideration while resolving a variety of real-life problems in differential equations. To show the recommended approach, three test problems were considered. The maple 18 program was used to perform calculations.

References

  • S. A. Salem, T. Y. Thanoon, “On solving Bratu’s type equation by perturbation Method,” Int. J. Nonlinear Anal. Appl., vol.13, no.1, pp. 2755-2763, Sep. 2021, doi:10.22075/ijnaa.2022.6000.
  • M. Zarebnia and M. Hoshyar, “Solution of Bratu-type equation via spline method,” Acta Univ. Apulensis, vol. 37, pp. 61–72, 2014.
  • A.M. Wazwaz, “The successive differentiation method for solving Bratu equation and Bratu-type equations,” Rom. J. Phys. Vol. 61, no.5-6, pp. 774–783, Sept. 2016.
  • M. Saravi, M. Hermann and D. Kaiser, “Solution of Bratu’s Equation by He’s variational Iteration Method,” Amer. J. Comput. Appl. Math., vol.3, no. 1, pp. 46-48, Mar. 2013, doi:10.5923/j.ajcam.20130301.08.
  • H.B. Fenta and G.A. Derese, “Numerical solution of second order initial value problems of Bratu-type equations using sixth order Runge-Kutta seven stages method,” Int. J. Comput. Sci. Appl. Math., vol. 5, no.1, Feb.2019, doi: 10.12962/j24775401.v5i1.3806.
  • A. Ezekiel, “New Improved Variational Homotopy Perturbation Method for Bratu-Type Problems,” Amer. J. Comput. Math., vol. 3, no. 2, pp. 110-113, Jan. 2013, doi: 10.4236/ajcm.2013.32018.
  • H. N. Hassan and M. S. Semary, “Analytic approximate solution for the Bratu’s problem by optimal homotopy analysis method,” Commun. Numerical Anal. vol. 2013, pp.1-14, Feb.2013, doi: 10.5899/2013/can-00139.
  • Y. Aregbesola, “Numerical solution of Bratu problem using the method of weighted residual,” Elect. J. South African Math. Soc., vol. 3, no. 1, pp.1-7, 2003.
  • A.M. Wazwaz, “Adomians decomposition method for a reliable treatment of the Bratu-type equations,” Appl. Math. Comput., vol.166, no. 3, pp. 652-663, Jul. 2005, doi: 10.1016/j.amc.2004.06.059.
  • Y. Changqing and H. Jianhua, “Chebyshev wavelets method for solving Bratu’s problem,” Bound. Value Prob., vol 1, 142, Jun. 2013, doi: 10.1186/1687-2770-2013-142.
  • I. J. Otaide and I. J. Ugbene, “Application of the Taylor Series Technique to the solution of Bratu Problems,” FNAS-JMNS, vol.2, no.1, pp. 19-26, Mar. 2025.
  • I.J. Otaide and I.J. Ugbene, “Step-By-Step Application of Shifted Legendre Polynomials on Numerical Assessment of Non-Linear Bratu Differential Equations,” Zamfara International Journal of Education (ZIJE), vol.4, no.5, pp. 415-420, Dec. 2024, doi: 10.5281/zenodo.15258640.
There are 12 citations in total.

Details

Primary Language English
Subjects Numerical Computation and Mathematical Software, Numerical Analysis
Journal Section Research Article
Authors

Ikechukwu Otaide 0000-0003-0720-3399

Oghenerukevwe Usu Egborge This is me 0009-0002-1190-9079

Submission Date July 19, 2025
Acceptance Date October 28, 2025
Publication Date November 1, 2025
Published in Issue Year 2025 Volume: 22 Issue: 2

Cite

APA Otaide, I., & Egborge, O. U. (2025). Regular Perturbation Approach to Bratu Equations with Fractional Exponent. Cankaya University Journal of Science and Engineering, 22(2), 121-127.
AMA Otaide I, Egborge OU. Regular Perturbation Approach to Bratu Equations with Fractional Exponent. CUJSE. November 2025;22(2):121-127.
Chicago Otaide, Ikechukwu, and Oghenerukevwe Usu Egborge. “Regular Perturbation Approach to Bratu Equations With Fractional Exponent”. Cankaya University Journal of Science and Engineering 22, no. 2 (November 2025): 121-27.
EndNote Otaide I, Egborge OU (November 1, 2025) Regular Perturbation Approach to Bratu Equations with Fractional Exponent. Cankaya University Journal of Science and Engineering 22 2 121–127.
IEEE I. Otaide and O. U. Egborge, “Regular Perturbation Approach to Bratu Equations with Fractional Exponent”, CUJSE, vol. 22, no. 2, pp. 121–127, 2025.
ISNAD Otaide, Ikechukwu - Egborge, Oghenerukevwe Usu. “Regular Perturbation Approach to Bratu Equations With Fractional Exponent”. Cankaya University Journal of Science and Engineering 22/2 (November2025), 121-127.
JAMA Otaide I, Egborge OU. Regular Perturbation Approach to Bratu Equations with Fractional Exponent. CUJSE. 2025;22:121–127.
MLA Otaide, Ikechukwu and Oghenerukevwe Usu Egborge. “Regular Perturbation Approach to Bratu Equations With Fractional Exponent”. Cankaya University Journal of Science and Engineering, vol. 22, no. 2, 2025, pp. 121-7.
Vancouver Otaide I, Egborge OU. Regular Perturbation Approach to Bratu Equations with Fractional Exponent. CUJSE. 2025;22(2):121-7.