On Some Properties of the Space Lpw(Rn) and Lqt(Rn)

Cihan UNAL [1] , İsmail AYDİN [2]


In this paper, we define A p,q(.) w,ϑ (R n ) to be space of the intersection of the spaces L p w (R n ) and L q(.) ϑ (R n ). Also, we investigate some inclusions and embedding properties of the space. Moreover, we discuss other basic properties of A p,q(.) w,ϑ (R n ).

Variable exponent, embedding, maximal operator
  • [1] R. A. Adams, J. J. F. Fournier, Sobolev Spaces (2 nd Ed.). Academic Press, Amsterdam, (2003).
  • [2] I. Aydın, On Variable Exponent Amalgam Spaces, Analele Stiintifice Ale Universitatii Ovidius onstanta-SeriaMatematica, 20(3), (2012), 5-20.
  • [3] I. Aydın, Weighted Variable Sobolev Spaces and Capacity, Journal of Function Spaces and Applications, 2012,Article ID 132690, doi:10.1155/2012/132690, (2012).
  • [4] I. Aydın, A. T. G¨urkanlı, On Some Properties of the Spaces Ap(x)w (Rn), Proceedings of Jangjeon Mathematical Society, 12(2), (2009), 141-155.
  • [5] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The Maximal Function on Variable Lp spaces, Annales Academiae Scientiarum Fennicae-Mathematica, 28, (2003), 223-238.
  • [6] L. Diening, Maximal Function on Generalized Lebesgue Spaces Lp(.), Mathematical Inequalities and Applications, 7(2), (2004), 245-253.
  • [7] L. Diening, P. Hast¨o, A. Nekvinda, Open Problems in Variable Exponent Lebesgue and Sobolev Spaces, In Proceedingsof the Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA’ 04), Milovy, Czech, (2004), 38-58.
  • [8] L. Diening, P. Harjulehto, P. Hast¨o, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, SpringerVerlag, Berlin, (2011).
  • [9] J. Duoandikoetxea, Fourier Analysis, vol. 29 of Graduate Studies in Mathematics, American Mathematical Society, USA, (2000).
  • [10] E. Edmunds, A. Fiorenza, A. Meskhi, On a Measure of Non-Compactness for Some Classical Operators, Acta Mathematica Sinica, 22(6), (2006), 1847-1862.
  • [11] X. Fan, D. Zhao, On the Spaces Lp(x)(Ω) and Wk,p(x) (Ω), Journal of Mathematical Analysis and Applications, 263(2), (2001), 424-446.
  • [12] H. G. Feichtinger, Gewichtsfuncktionen Auf Lokalkompakten Gruppen, Sitzungsberichte der Oster. Akad.d. Wissenschaften, Mathem.-naturw. Klasse, Abteilung II, 188, Bd. 8, bis. 10 (1979).
  • [13] H. G. Feichtinger, A. T. Gürkanli, On a Family of Weighted Convolution Algebras, International Journal of Mathematical and Mathematical Sciences, 13(3), (1990), 517-526.
  • [14] A. Fiorenza, M. Krbec, A Note on Noneffective Weights in Variable Lebesgue Spaces, Hindawi Publishing Corporation Journal of Function Spaces and Applications, 2012, (2011).[15] R. H. Fischer, A. T. G¨urkanli, T. S. Liu, On a Family of Weighted Spaces, Mathematica Slovaca, 46(1), (1996), 71-82.
  • [15] R. H. Fischer, A. T. Gürkanli, T. S. Liu, On a Family of Weighted Spaces, Mathematica Slovaca, 46(1), (1996), 71-82
  • [16] A. T. Gürkanlı, Compact Embeddings of the Spaces Apw,ω Rd, Taiwanese Journal of Mathematics, 12(7), (2008), 1757-1767.
  • [17] V. Kokilasvili, S. Samko, Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent, Georgian Mathematical Journal, 10(1), (2003), 145-156.
  • [18] O. Kovacik, J. Rakosnik, On Spaces Lp(x) and Wk,p(x), Czechoslovak Mathematical Journal, 41(4), (1991), 592-618.
  • [19] T. S. Liu, A. Van Rooij, Sums and Intersections of Normed Linear Spaces, Mathematische Nachrichten 42, (1969), 29-42.
  • [20] B. Muckenhoupt, Weighted Norm Inequalities for the Hardy Maximal Function, Transactions of the American Mathematical Society, 165, (1972), 207-226.
  • [21] A. Nekvinda, Hardy-Littlewood Maximal Operator on Lp(x)(R), Mathematical Inequalities and Applications, 7(2), (2004), 255-265.
  • [22] L. Pick, M. Ruzicka, An Example of a Space Lp(x) on which the Hardy-Littlewood Maximal Operator is not Bounded, Expositiones Mathematicae, 19, (2001), 369-371.
  • [23] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford, (1968).
  • [24] H. L. Royden, Real Analysis, Mac Millan Publishing Co. INC., Newyork, (1968).
  • [25] M. Ruzicka, Electrorheological Fluids, Modeling and Mathematical Theory, Springer-Verlag, Berlin, (2000).
  • [26] B. Sagir, A. T. Gurkanlı, The Spaces Bp,qw,ϑ(G) and Some Properties, Journal of Faculty Science Ege University Series A, 17(2), (1994), 53-63.
  • [27] S. Samko, On a Progress in the Theory of Lebesgue Spaces with Variable Exponent: Maximal and Singular Operators, Integral Transforms and Special Functions, 16(5-6), (2005), 461-482.
  • [28] C. Unal, I. Aydın, Some Results on a Weighted Convolution Algebra, Proceedings of the Jangjeon Mathematical Society, 18(1), (2015), 109-127.
  • [29] C.R. Warner, Closed Ideals in the Group Algebra L1(G)∩L2(G), Transactions of the American Mathematical Society, 121, (1966), 408-423.
  • [30] L. Y. H. Yap, Ideals in Subalgebras of the Group Algebras, Studia Mathematica, 35, (1970), 165-175.
  • [31] L. Y. H. Yap, On two Classes of Subalgebras of L1(G), Proceedings of the Japan Academy, 48, (1972), 315-319.
  • [32] V. V. Zhikov, Averaging of Functionals of the Calculus of Variations and Elasticity Theory, Izv. Akad. Nauk SSSR Ser. Mat., 50(4), (1986), 675-710, 877.
  • [33] V. V. Zhikov, Meyer-type Estimates for Solving the Nonlinear Stokes System, Differ. Uravn., 33(1), (1997), 107-114, 143.
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yazar: Cihan UNAL

Yazar: İsmail AYDİN

Tarihler

Yayımlanma Tarihi : 1 Kasım 2016

Bibtex @araştırma makalesi { cankujse344500, journal = {Cankaya University Journal of Science and Engineering}, issn = {}, eissn = {2564-7954}, address = {}, publisher = {Çankaya Üniversitesi}, year = {2016}, volume = {13}, pages = { - }, doi = {}, title = {On Some Properties of the Space Lpw(Rn) and Lqt(Rn)}, key = {cite}, author = {Unal, Cihan and Aydi̇n, İsmail} }
APA Unal, C , Aydi̇n, İ . (2016). On Some Properties of the Space Lpw(Rn) and Lqt(Rn) . Cankaya University Journal of Science and Engineering , 13 (2) , . Retrieved from https://dergipark.org.tr/tr/pub/cankujse/issue/31473/344500
MLA Unal, C , Aydi̇n, İ . "On Some Properties of the Space Lpw(Rn) and Lqt(Rn)" . Cankaya University Journal of Science and Engineering 13 (2016 ): <https://dergipark.org.tr/tr/pub/cankujse/issue/31473/344500>
Chicago Unal, C , Aydi̇n, İ . "On Some Properties of the Space Lpw(Rn) and Lqt(Rn)". Cankaya University Journal of Science and Engineering 13 (2016 ):
RIS TY - JOUR T1 - On Some Properties of the Space Lpw(Rn) and Lqt(Rn) AU - Cihan Unal , İsmail Aydi̇n Y1 - 2016 PY - 2016 N1 - DO - T2 - Cankaya University Journal of Science and Engineering JF - Journal JO - JOR SP - EP - VL - 13 IS - 2 SN - -2564-7954 M3 - UR - Y2 - 2020 ER -
EndNote %0 Cankaya University Journal of Science and Engineering On Some Properties of the Space Lpw(Rn) and Lqt(Rn) %A Cihan Unal , İsmail Aydi̇n %T On Some Properties of the Space Lpw(Rn) and Lqt(Rn) %D 2016 %J Cankaya University Journal of Science and Engineering %P -2564-7954 %V 13 %N 2 %R %U
ISNAD Unal, Cihan , Aydi̇n, İsmail . "On Some Properties of the Space Lpw(Rn) and Lqt(Rn)". Cankaya University Journal of Science and Engineering 13 / 2 (Kasım 2016): - .
AMA Unal C , Aydi̇n İ . On Some Properties of the Space Lpw(Rn) and Lqt(Rn). Cankaya University Journal of Science and Engineering. 2016; 13(2): -.
Vancouver Unal C , Aydi̇n İ . On Some Properties of the Space Lpw(Rn) and Lqt(Rn). Cankaya University Journal of Science and Engineering. 2016; 13(2): -.