In this paper, the concept of a soft MV-module is introduced and some examples are provided. Then, different types of intersections and unions of the family of soft MV -modules are established. Moreover, the notions of soft MV-submodules and soft MV -module homomorphisms are introduced and some of their properties are studied. 

Soft MV -module, Soft set, MV -module
  • [1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59, (2010), 3458-3463.
  • [2] D. Afkhami Taba, A. Hasankhani, M. Bolurian, Soft nexuses, Comput. Math. Appl., 64(6), (2012), 1812-1821.
  • [3] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177, (2007), 2726-2735.
  • [4] A. Ali, M. Aslam, A. Fahmi, Soft Loops, U.P.B. Sci. Bull. Series A, 76(2), (2014), 159-168.
  • [5] N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59, (2010), 3308- 3314.
  • [6] C. C. Chang, Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc., 88, (1958), 467-490.
  • [7] R. L. O. Cignoli, I. M. L. D’Ottavianoand D. Mundici, AlgebraicFoundationsofMany-ValuedReasoning,Kluwer Academic, Dordrecht, Boston, (2000).
  • [8] F. Citak, N. Cagman, J. Zhan, Soft K-INT-Ideals of Semirings, preprint.
  • [9] A. DiNola, P. Flondor, I. Leustean, MV-modules, J. of Algebra, 267, (2003), 21-40.
  • [10] A. Erami, A. Hasankhani, Soft Vectorial MV -algebras, Indian J. of Science and Technology, 7(9), (2014), 1428- 1436.
  • [11] B. A. Ersoy, S. Onar, B. Davvaz, K. Hila, Structure of idealistic fuzzy soft Γ-near-ring, U.P.B. Sci. Bull. Series A, 77(3), (2015), 15-28.
  • [12] F. Feng, Y. B. Jun, X. Z. Zhao, Soft semirings, Comput. Math. Appl., 56, (2008), 2621-2628.
  • [13] F. Forouzesh, E. Eslami, A. Borumand Saeid, On prime A-ideals in MV-modules, U.P.B. Sci. Bull. Series A, 76(3), (2014), 181-198.
  • [14] A. R. Hadipour, A. Borumand Saeid, Fuzzy soft BF-algebra, Indian J. of Science and Technology, 6(3), 4199- 4204.
  • [15] K. Hila, T. Vougiouklis, K. Naka, On the structure of soft m-ary semihypergroups, U.P.B. Sci. Bull. Series A, 76(4), (2014), 91-106.
  • [16] Y. B. Jun, K. J. Lee, E. H. Roh, IntersectionalsoftBCK/BCI-ideals,AnnalsofFuzzyMathematicsandInformatics, 4(1), (2012), 1-7.
  • [17] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., 56, (2008), 1408-1413.
  • [18] Y. B. Jun, S. Z. Song, Filters of BE-algebras associated with uni-soft set theory, Applied Mathematical Sciences, 9(84), (2015), 4155-4164.
  • [19] O. Kazanci, S. Yilmaz, S. Yamak, Soft set and soft BCH-Algebras, Hacettepe J. of Mathematics and Statistics, 39(2), (2010), 205-217.
  • [20] M. Khan, F. Ilyas, M. Gulistan, S. Anis, A study of fuzzy soft AG-groupoids, Annals of Fuzzy Mathematics and Informatics, 9(4), (2015), 621-638.
  • [21] P. K. Maji, R. Biswas, A. R. Roy, Soft Set Theory, Comput. Math. Appl., 45, (2003), 555-562.
  • [22] P. K. Maji, A. R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44, (2002), 1077-1083.
  • [23] D. Molodtsov, Soft Set Theory: First Results, Comput. Math. Appl., 37, (1999), 19-31.
  • [24] M. M. K. Rao, Fuzzy soft Γ-semiring and fuzzy soft k-ideal over Γ-semiring, Annals of Fuzzy Mathematics and Informatics, 9(2), (2015), 341-354.
  • [25] D. Noje, B. Bede, Vectorial MV-algebras, Soft computing, 7, (2003), 258-262.
  • [26] D. Pei and D. Miao, From soft sets to information systems, Proceedings of Granular Computing, IEEE, 2, (2005), 617-621.
  • [27] Q. M. Sun, Z.L. Zhang, J. Liu, Soft sets and soft modules, Lecture Notes in Computer Science, 5009, (2008), 403-409.
  • [28] S. Yamak, O. Kazanci, B. Davvaz, Soft hyperstructure, Comput. Math. Appl., 62, (2011), 797-803.
  • [29] J. Zhan, W. A. Dudek, Soft MTL-Algebras based on Fuzzy Sets, U.P.B. Sci. Bull Series A, 74(2), (2012), 41-56.
  • [30] Z. Zhu, Soft Sets, Soft BL-algebras and Soft Logic System BL, Sciverse Science direct, Procedia Engineering, 15, (2011), 3531-3535.
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yazar: A. Erami

Yazar: A. Hasankhani

Yazar: A. Borumand Saeid

Tarihler

Yayımlanma Tarihi : 1 Mayıs 2016

Bibtex @araştırma makalesi { cankujse344637, journal = {Cankaya University Journal of Science and Engineering}, issn = {}, eissn = {2564-7954}, address = {}, publisher = {Çankaya Üniversitesi}, year = {2016}, volume = {13}, pages = { - }, doi = {}, title = {MV-Modules in View of soft Set Theory}, key = {cite}, author = {Erami, A. and Hasankhani, A. and Saeid, A. Borumand} }
APA Erami, A , Hasankhani, A , Saeid, A . (2016). MV-Modules in View of soft Set Theory . Cankaya University Journal of Science and Engineering , 13 (1) , . Retrieved from https://dergipark.org.tr/tr/pub/cankujse/issue/31481/344637
MLA Erami, A , Hasankhani, A , Saeid, A . "MV-Modules in View of soft Set Theory" . Cankaya University Journal of Science and Engineering 13 (2016 ): <https://dergipark.org.tr/tr/pub/cankujse/issue/31481/344637>
Chicago Erami, A , Hasankhani, A , Saeid, A . "MV-Modules in View of soft Set Theory". Cankaya University Journal of Science and Engineering 13 (2016 ):
RIS TY - JOUR T1 - MV-Modules in View of soft Set Theory AU - A. Erami , A. Hasankhani , A. Borumand Saeid Y1 - 2016 PY - 2016 N1 - DO - T2 - Cankaya University Journal of Science and Engineering JF - Journal JO - JOR SP - EP - VL - 13 IS - 1 SN - -2564-7954 M3 - UR - Y2 - 2020 ER -
EndNote %0 Cankaya University Journal of Science and Engineering MV-Modules in View of soft Set Theory %A A. Erami , A. Hasankhani , A. Borumand Saeid %T MV-Modules in View of soft Set Theory %D 2016 %J Cankaya University Journal of Science and Engineering %P -2564-7954 %V 13 %N 1 %R %U
ISNAD Erami, A. , Hasankhani, A. , Saeid, A. Borumand . "MV-Modules in View of soft Set Theory". Cankaya University Journal of Science and Engineering 13 / 1 (Mayıs 2016): - .
AMA Erami A , Hasankhani A , Saeid A . MV-Modules in View of soft Set Theory. Cankaya University Journal of Science and Engineering. 2016; 13(1): -.
Vancouver Erami A , Hasankhani A , Saeid A . MV-Modules in View of soft Set Theory. Cankaya University Journal of Science and Engineering. 2016; 13(1): -.