Research Article
BibTex RIS Cite
Year 2014, Volume: 11 Issue: 1, - , 01.05.2014

Abstract

References

  • [1] M.S. El Nashie, Quantum Mechanics and the Possibility of a Cantorian Spacetime, Chaos, Solitons and Fractals, 1(5), (1992), 485-7.
  • [2] M.S. El Naschie, The Concepts of E Infinity: An Elementary Introduction to the Cantorian-Fractal Theory of Quantum Physics, Chaos, Solitons and Fractals, 22(2), (2004), 495-511.
  • [3] R. H. Fischler, The Shape of the Great Pyramid, Waterloo: Wilfrid Laurier University Press, (2000).
  • [4] S. H. Hendi, M. Sharifzadeh, Special Relativity and the Golden Ratio, Journal of Theoretical Physics, 1, (2012), 37-45.
  • [5] R. Heyrovska, The Golden Ratio Ionic and Atomic Radii and Bond Lengths, Molecular Physics, 103, (2005), 877-82.
  • [6] W. Y. Hsiang, Lectures on Lie Groups, World Scientific, (2000).
  • [7] A. W. Joshi, Elements of Group Theory for Physicists, New York: J. Wiley, (1982).
  • [8] M. Livio, The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number Φ, Broadway Books, (2002).
  • [9] E. Meinrenken, Lie Groups and Lie Algebra, Lecture Notes University of Toronto, (2010).
  • [10] T. Needham, Visual Complex Analysis, Oxford University Press, (1997).
  • [11] V.V. Trofimov, Introduction to Geometry of Manifolds with Symmetry, P. Kluwer Academic Publishers, (1994).

Some Golden Objects in Geometry

Year 2014, Volume: 11 Issue: 1, - , 01.05.2014

Abstract

In this paper, first, an induced algebra with respect to the polynomial P(x) is defined and then, an
induced Lie group with respect to P(x) is determined. Finally, Golden Algebras, Golden Lie groups, Golden
curves and Golden surfaces are introduced based on the definition of generalized Golden polynomials.

References

  • [1] M.S. El Nashie, Quantum Mechanics and the Possibility of a Cantorian Spacetime, Chaos, Solitons and Fractals, 1(5), (1992), 485-7.
  • [2] M.S. El Naschie, The Concepts of E Infinity: An Elementary Introduction to the Cantorian-Fractal Theory of Quantum Physics, Chaos, Solitons and Fractals, 22(2), (2004), 495-511.
  • [3] R. H. Fischler, The Shape of the Great Pyramid, Waterloo: Wilfrid Laurier University Press, (2000).
  • [4] S. H. Hendi, M. Sharifzadeh, Special Relativity and the Golden Ratio, Journal of Theoretical Physics, 1, (2012), 37-45.
  • [5] R. Heyrovska, The Golden Ratio Ionic and Atomic Radii and Bond Lengths, Molecular Physics, 103, (2005), 877-82.
  • [6] W. Y. Hsiang, Lectures on Lie Groups, World Scientific, (2000).
  • [7] A. W. Joshi, Elements of Group Theory for Physicists, New York: J. Wiley, (1982).
  • [8] M. Livio, The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number Φ, Broadway Books, (2002).
  • [9] E. Meinrenken, Lie Groups and Lie Algebra, Lecture Notes University of Toronto, (2010).
  • [10] T. Needham, Visual Complex Analysis, Oxford University Press, (1997).
  • [11] V.V. Trofimov, Introduction to Geometry of Manifolds with Symmetry, P. Kluwer Academic Publishers, (1994).
There are 11 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Z. Nazari This is me

A. Delbaznasab This is me

Y. Bahrampour This is me

Publication Date May 1, 2014
Published in Issue Year 2014 Volume: 11 Issue: 1

Cite

APA Nazari, Z., Delbaznasab, A., & Bahrampour, Y. (2014). Some Golden Objects in Geometry. Cankaya University Journal of Science and Engineering, 11(1).
AMA Nazari Z, Delbaznasab A, Bahrampour Y. Some Golden Objects in Geometry. CUJSE. May 2014;11(1).
Chicago Nazari, Z., A. Delbaznasab, and Y. Bahrampour. “Some Golden Objects in Geometry”. Cankaya University Journal of Science and Engineering 11, no. 1 (May 2014).
EndNote Nazari Z, Delbaznasab A, Bahrampour Y (May 1, 2014) Some Golden Objects in Geometry. Cankaya University Journal of Science and Engineering 11 1
IEEE Z. Nazari, A. Delbaznasab, and Y. Bahrampour, “Some Golden Objects in Geometry”, CUJSE, vol. 11, no. 1, 2014.
ISNAD Nazari, Z. et al. “Some Golden Objects in Geometry”. Cankaya University Journal of Science and Engineering 11/1 (May 2014).
JAMA Nazari Z, Delbaznasab A, Bahrampour Y. Some Golden Objects in Geometry. CUJSE. 2014;11.
MLA Nazari, Z. et al. “Some Golden Objects in Geometry”. Cankaya University Journal of Science and Engineering, vol. 11, no. 1, 2014.
Vancouver Nazari Z, Delbaznasab A, Bahrampour Y. Some Golden Objects in Geometry. CUJSE. 2014;11(1).