Araştırma Makalesi
BibTex RIS Kaynak Göster

Topological Functors via Closure Operators

Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

In this article for a given category X , we fully embed certain categories of
closure operators on a given collection M ⊆ X1, in certain categories of preclass-valued
lax presheaves on X . We then fully embed the just mentioned categories of preclass-valued
lax presheaves on X , in certain categories of topological functors on X . Combining the full
embeddings obtained, we construct a topological functor from a given closure operator.

Kaynakça

  • [1] J. Ad´amek, H. Herrlich, J. Rosicky and W. Tholen, Weak factorization systems and topological functors, Applied Categorical Structures 10 (2002), 237–249.
  • [2] J. Adam´ek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
  • [3] M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures 10 (2002), 403–415.
  • [4] H. L. Bentley and H. Herrlich, Merotopological spaces, Applied Categorical Structures 12 (2004), 155–180.
  • [5] H. L. Bentley and E. Lowen-Colebunders, Initial morphisms versus embeddings, Applied Categorical Structures 12 (2004), 361–367.
  • [6] L. M. Brown, R. Ert¨urk and S¸. Dost, Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2004), 201–231.
  • [7] G. Castellini, Categorical Closure Operators, Birkh¨auser, Boston 2003.
  • [8] G. Castellini, Connectedness with respect to a closure operator, Applied Categorical Structures 9 (2001), 285–302.
  • [9] M. M. Clementino, On categorical notions of compact objects, Applied Categorical Structures 4 (1996), 15–29.
  • [10] M. M. Clementino and D. Hofmann, Topological features of lax algebras, Applied Categorical Structures 11 (2003), 267–286.
  • [11] M. M. Clementino and W. Tholen, Tychonoff’s theorem in a category, Proceedings of the American Mathematical Society 124 (1996), 3311–3314.
  • [12] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, Netherlands 1995.
  • [13] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Mathematicae 11 (1988), 323–337.
  • [14] T. H. Fay, Weakly hereditary initial closure operators, Applied Categorical Structures 8 (2000), 415–431.
  • [15] T. H. Fay and S. V. Joubert, Isolated submodules and skew fields, Applied Categorical Structures 8 (2000), 317–326.
  • [16] J. Fillmore, D. Pumpl¨un and H. R¨ohrl, On N-summations, I, Applied Categorical Structures 10 (2002), 291–315.
  • [17] W. G¨ahler, A. S. Abd-Allah and A. Kandil, On extended fuzzy topologies, Fuzzy Sets and Systems 109 (2000), 149–172.
  • [18] E. Giuli and W. Tholen, Openness with respect to a closure operator, Applied Categorical Structures 8 (2000), 487–502.
  • [19] S. N. Hosseini and S. Sh. Mousavi, A relation between closure operators on a small category and its category of presheaves, Applied Categorical Structures 14 (2006), 99–110.
  • [20] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer-Verlag New York Inc. 1992.
  • [21] M. V. Mielke, Final lift actions associated with topological functors, Applied Categorical Structures 10 (2002), 495–504.
Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

Kaynakça

  • [1] J. Ad´amek, H. Herrlich, J. Rosicky and W. Tholen, Weak factorization systems and topological functors, Applied Categorical Structures 10 (2002), 237–249.
  • [2] J. Adam´ek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
  • [3] M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures 10 (2002), 403–415.
  • [4] H. L. Bentley and H. Herrlich, Merotopological spaces, Applied Categorical Structures 12 (2004), 155–180.
  • [5] H. L. Bentley and E. Lowen-Colebunders, Initial morphisms versus embeddings, Applied Categorical Structures 12 (2004), 361–367.
  • [6] L. M. Brown, R. Ert¨urk and S¸. Dost, Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2004), 201–231.
  • [7] G. Castellini, Categorical Closure Operators, Birkh¨auser, Boston 2003.
  • [8] G. Castellini, Connectedness with respect to a closure operator, Applied Categorical Structures 9 (2001), 285–302.
  • [9] M. M. Clementino, On categorical notions of compact objects, Applied Categorical Structures 4 (1996), 15–29.
  • [10] M. M. Clementino and D. Hofmann, Topological features of lax algebras, Applied Categorical Structures 11 (2003), 267–286.
  • [11] M. M. Clementino and W. Tholen, Tychonoff’s theorem in a category, Proceedings of the American Mathematical Society 124 (1996), 3311–3314.
  • [12] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, Netherlands 1995.
  • [13] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Mathematicae 11 (1988), 323–337.
  • [14] T. H. Fay, Weakly hereditary initial closure operators, Applied Categorical Structures 8 (2000), 415–431.
  • [15] T. H. Fay and S. V. Joubert, Isolated submodules and skew fields, Applied Categorical Structures 8 (2000), 317–326.
  • [16] J. Fillmore, D. Pumpl¨un and H. R¨ohrl, On N-summations, I, Applied Categorical Structures 10 (2002), 291–315.
  • [17] W. G¨ahler, A. S. Abd-Allah and A. Kandil, On extended fuzzy topologies, Fuzzy Sets and Systems 109 (2000), 149–172.
  • [18] E. Giuli and W. Tholen, Openness with respect to a closure operator, Applied Categorical Structures 8 (2000), 487–502.
  • [19] S. N. Hosseini and S. Sh. Mousavi, A relation between closure operators on a small category and its category of presheaves, Applied Categorical Structures 14 (2006), 99–110.
  • [20] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer-Verlag New York Inc. 1992.
  • [21] M. V. Mielke, Final lift actions associated with topological functors, Applied Categorical Structures 10 (2002), 495–504.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mina Jamshidi Bu kişi benim

Seyed Naser Hosseini Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 10 Sayı: 1

Kaynak Göster

APA Jamshidi, M., & Hosseini, S. N. (2013). Topological Functors via Closure Operators. Cankaya University Journal of Science and Engineering, 10(1).
AMA Jamshidi M, Hosseini SN. Topological Functors via Closure Operators. CUJSE. Mayıs 2013;10(1).
Chicago Jamshidi, Mina, ve Seyed Naser Hosseini. “Topological Functors via Closure Operators”. Cankaya University Journal of Science and Engineering 10, sy. 1 (Mayıs 2013).
EndNote Jamshidi M, Hosseini SN (01 Mayıs 2013) Topological Functors via Closure Operators. Cankaya University Journal of Science and Engineering 10 1
IEEE M. Jamshidi ve S. N. Hosseini, “Topological Functors via Closure Operators”, CUJSE, c. 10, sy. 1, 2013.
ISNAD Jamshidi, Mina - Hosseini, Seyed Naser. “Topological Functors via Closure Operators”. Cankaya University Journal of Science and Engineering 10/1 (Mayıs 2013).
JAMA Jamshidi M, Hosseini SN. Topological Functors via Closure Operators. CUJSE. 2013;10.
MLA Jamshidi, Mina ve Seyed Naser Hosseini. “Topological Functors via Closure Operators”. Cankaya University Journal of Science and Engineering, c. 10, sy. 1, 2013.
Vancouver Jamshidi M, Hosseini SN. Topological Functors via Closure Operators. CUJSE. 2013;10(1).