Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 16 Sayı: 2, 10 - 15, 01.11.2019

Öz

Kaynakça

  • M. S .Abbass, On fully stable modules , Ph.D. Thesis, University of Baghdad, 1991.
  • 2. W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
  • 3. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, TaiwaneseJ. Math. 11 (4) (2007), 1189–1201.
  • 4. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8(1) (2009), 105–113.
  • 5. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull.Iranian Math. Soc. 38 (4 ) (2012), 987-1005.
  • 6. A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
  • 7. C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
  • 8. Adil G. Naoum and Bahar H. Al-Bahraany, Modules with the pure sum property, Iraqi J. Sci.,43 (3) (2002), 39-51.
  • 9. R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
  • 10. R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia,PA, 1991.

Copure Submodules and Related Results

Yıl 2019, Cilt: 16 Sayı: 2, 10 - 15, 01.11.2019

Öz


Let
M be a module over a commutative ring R with identity. A
submodule K of M is copure provided that
(K :M I) = K + (0 :M I) for
each ideal I of R. In this paper, we investigate some results
about copure submodules of M

Kaynakça

  • M. S .Abbass, On fully stable modules , Ph.D. Thesis, University of Baghdad, 1991.
  • 2. W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
  • 3. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, TaiwaneseJ. Math. 11 (4) (2007), 1189–1201.
  • 4. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8(1) (2009), 105–113.
  • 5. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull.Iranian Math. Soc. 38 (4 ) (2012), 987-1005.
  • 6. A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
  • 7. C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
  • 8. Adil G. Naoum and Bahar H. Al-Bahraany, Modules with the pure sum property, Iraqi J. Sci.,43 (3) (2002), 39-51.
  • 9. R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
  • 10. R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia,PA, 1991.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Faranak Farshadıfar

Yayımlanma Tarihi 1 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 16 Sayı: 2

Kaynak Göster

APA Farshadıfar, F. (2019). Copure Submodules and Related Results. Cankaya University Journal of Science and Engineering, 16(2), 10-15.
AMA Farshadıfar F. Copure Submodules and Related Results. CUJSE. Kasım 2019;16(2):10-15.
Chicago Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering 16, sy. 2 (Kasım 2019): 10-15.
EndNote Farshadıfar F (01 Kasım 2019) Copure Submodules and Related Results. Cankaya University Journal of Science and Engineering 16 2 10–15.
IEEE F. Farshadıfar, “Copure Submodules and Related Results”, CUJSE, c. 16, sy. 2, ss. 10–15, 2019.
ISNAD Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering 16/2 (Kasım 2019), 10-15.
JAMA Farshadıfar F. Copure Submodules and Related Results. CUJSE. 2019;16:10–15.
MLA Farshadıfar, Faranak. “Copure Submodules and Related Results”. Cankaya University Journal of Science and Engineering, c. 16, sy. 2, 2019, ss. 10-15.
Vancouver Farshadıfar F. Copure Submodules and Related Results. CUJSE. 2019;16(2):10-5.