Research Article
BibTex RIS Cite

Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks

Year 2022, , 1180 - 1203, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1049893

Abstract

One of the objectives of this paper is to establish the exact controllability for wave-type evolution equations on non-convex and/or cracked domains with non-concurrent support crack lines. Admittedly, we know that according to the work of Grisvard P., in domains with corners or cracks, the formulas of integrations by parts are subject to geometric conditions: the lines of cracks or their supports must be concurrent. In this paper, we have established the exact controllability for the wave equation in a domain with cracks without these additional geometric conditions.

Supporting Institution

FASTEF, UCAD

Thanks

Thanks in advance to the reviewers

References

  • Kondratiev, V.A., Boundary value problems for elliptic equation in domain with conical or angular points, Transactions Moscow Mat. Soc., (1967), 227-313.
  • Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
  • Moussaoui, M., Singularites des solutions du probleme mele, controlabilite exacte et stabilisation frontiere, Soc. Math. Appl. Indust., 1997.
  • Niane, M.T., Bayili, G., Sene, A., Sene, A., Sy, M., Is it possible to cancel singularities in a domain with corners and cracks?, C. R. Math. Acad. Sci., 343(2) (2006), 115-118. https://doi:10.1016/j.crma.2006.05.003
  • Seck, C., Bayili, G., Sene, A., Niane, M.T., Controlabilite exacte de l'equation des ondes dans des espaces de Sobolev non reguliers pour un ouvert poygonal, Afrika Matematika, 23 (2012), 1-9. https://doi:10.1007/s13370-011-0001-6
  • Gilbert, B., Nicaise, S., Stabilization of the wave equation in a polygonal domain with cracks, Rev. Mat. Complut., 27(1) (2014), 259-289. https://doi: 10.1007/s13163-012-0113-z
  • Costabel, M., On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr., 292 (2019), 2165-2173. https://doi:10.1002/mana.201800077.
  • Niane, M.T., Controlabilite spectrale elargie des syst`emes distribues par une action sur une petite partie analytique arbitraire de la fontiere, C.R. Acad. Sci., Paris, 309(1), (1989), 335-340.
  • Lions, J.L., Controlabilite Exacte, Perturbations et Stabilisation de SystEMes DistribuES,Tome 2, Recherches en Mathematiques Appliquees, Research in Applied Mathematics, Volume 9, Perturbations, Masson, Paris, 1988.
  • Lions, J.-L., Controlabilite exacte, perturbations et stabilisation de systemes distribues. Tome 1, Recherches en Math´ematiques Appliquees ,Research in Applied Mathematics, Volume 8, Paris, 1988.
  • Brezis, H., Analyse Fonctionnelle, Theorie et Applications, Masson, 1983.
  • Hormander, L., Linear Partial Differential Operators, Springer Verlag, Berlin, 1976.
  • Dauge, M., Balac, S., Moitier, Z., Asymptotics for 2D whispering gallery modes in optical micro-disks with radially varying index, Arxiv: 2003.14315. https://doi:10.1093/imamat/hxab033.
  • Dauge, M., Costabel, M., Hu, J.Q., Characterization of Sobolev spaces by their Fourier coefficients in axisymmetric domains, arXiv:2004.07216v1, 2020.
  • Dauge, M., Initiation Into Corner Singularities, Course Given in the RICAM Special Semester on Computational Methods in Science and Engineering, October, 2016.
  • Costabel, M., On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr., 292 (2019), 2165-2173. arXiv: 1711.07179. https://doi:10.1002/mana.201800077
Year 2022, , 1180 - 1203, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1049893

Abstract

References

  • Kondratiev, V.A., Boundary value problems for elliptic equation in domain with conical or angular points, Transactions Moscow Mat. Soc., (1967), 227-313.
  • Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
  • Moussaoui, M., Singularites des solutions du probleme mele, controlabilite exacte et stabilisation frontiere, Soc. Math. Appl. Indust., 1997.
  • Niane, M.T., Bayili, G., Sene, A., Sene, A., Sy, M., Is it possible to cancel singularities in a domain with corners and cracks?, C. R. Math. Acad. Sci., 343(2) (2006), 115-118. https://doi:10.1016/j.crma.2006.05.003
  • Seck, C., Bayili, G., Sene, A., Niane, M.T., Controlabilite exacte de l'equation des ondes dans des espaces de Sobolev non reguliers pour un ouvert poygonal, Afrika Matematika, 23 (2012), 1-9. https://doi:10.1007/s13370-011-0001-6
  • Gilbert, B., Nicaise, S., Stabilization of the wave equation in a polygonal domain with cracks, Rev. Mat. Complut., 27(1) (2014), 259-289. https://doi: 10.1007/s13163-012-0113-z
  • Costabel, M., On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr., 292 (2019), 2165-2173. https://doi:10.1002/mana.201800077.
  • Niane, M.T., Controlabilite spectrale elargie des syst`emes distribues par une action sur une petite partie analytique arbitraire de la fontiere, C.R. Acad. Sci., Paris, 309(1), (1989), 335-340.
  • Lions, J.L., Controlabilite Exacte, Perturbations et Stabilisation de SystEMes DistribuES,Tome 2, Recherches en Mathematiques Appliquees, Research in Applied Mathematics, Volume 9, Perturbations, Masson, Paris, 1988.
  • Lions, J.-L., Controlabilite exacte, perturbations et stabilisation de systemes distribues. Tome 1, Recherches en Math´ematiques Appliquees ,Research in Applied Mathematics, Volume 8, Paris, 1988.
  • Brezis, H., Analyse Fonctionnelle, Theorie et Applications, Masson, 1983.
  • Hormander, L., Linear Partial Differential Operators, Springer Verlag, Berlin, 1976.
  • Dauge, M., Balac, S., Moitier, Z., Asymptotics for 2D whispering gallery modes in optical micro-disks with radially varying index, Arxiv: 2003.14315. https://doi:10.1093/imamat/hxab033.
  • Dauge, M., Costabel, M., Hu, J.Q., Characterization of Sobolev spaces by their Fourier coefficients in axisymmetric domains, arXiv:2004.07216v1, 2020.
  • Dauge, M., Initiation Into Corner Singularities, Course Given in the RICAM Special Semester on Computational Methods in Science and Engineering, October, 2016.
  • Costabel, M., On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr., 292 (2019), 2165-2173. arXiv: 1711.07179. https://doi:10.1002/mana.201800077
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Cheikh Seck 0000-0001-8185-5956

Publication Date December 30, 2022
Submission Date December 28, 2021
Acceptance Date June 15, 2022
Published in Issue Year 2022

Cite

APA Seck, C. (2022). Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 1180-1203. https://doi.org/10.31801/cfsuasmas.1049893
AMA Seck C. Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):1180-1203. doi:10.31801/cfsuasmas.1049893
Chicago Seck, Cheikh. “Study and Suppression of Singularities in Wave-Type Evolution Equations on Non-Convex Domains With Cracks”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 1180-1203. https://doi.org/10.31801/cfsuasmas.1049893.
EndNote Seck C (December 1, 2022) Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 1180–1203.
IEEE C. Seck, “Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 1180–1203, 2022, doi: 10.31801/cfsuasmas.1049893.
ISNAD Seck, Cheikh. “Study and Suppression of Singularities in Wave-Type Evolution Equations on Non-Convex Domains With Cracks”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 1180-1203. https://doi.org/10.31801/cfsuasmas.1049893.
JAMA Seck C. Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:1180–1203.
MLA Seck, Cheikh. “Study and Suppression of Singularities in Wave-Type Evolution Equations on Non-Convex Domains With Cracks”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 1180-03, doi:10.31801/cfsuasmas.1049893.
Vancouver Seck C. Study and suppression of singularities in wave-type evolution equations on non-convex domains with cracks. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):1180-203.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.