Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 229 - 239, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1126635

Öz

Kaynakça

  • Alligood, K. T., Sauer, T. D., and Yorke, J. A., CHAOS: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.
  • Aslan, N., Saltan, M., and Demir, B., A different construction of the classical fractals via the escape time algorithm, Journal of Abstract and Computational Mathematics, 3(4) (2018), 1–15.
  • Aslan, N., Saltan, M., and Demir, B., The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron, Chaos, Solitons and Fractals, 123 (2019), 422-428. Doi:10.1016/j.chaos.2019.04.018.
  • Barnsley, M., Fractals Everywhere, 2nd ed. Academic Press, San Diego, 1988.
  • Cristea, L. L., Steinsky B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae, 85 (2013), 201-219. Doi: 10.1007/s00010-013-0197-7.
  • Devaney, R. L., An introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
  • Devaney, R. L., Look D. M., Symbolic dynamics for a Sierpinski curve Julia set, J. Differ. Equ. Appl., 11(7) (2005), 581-596. Doi: 10.1080/10236190412331334473.
  • Ercai, C., Chaos for the Sierpinski carpet, J. Stat. Phys., 88 (1997), 979-984.
  • Gu, J., Ye, Q., and Xi, L., Geodesics of higher dimensional Sierpinski gasket, Fractals, 27(4) (2019), 1950049. Doi: 10.1142/S0218348X1950049X.
  • Gulick, D., Encounters with Chaos and Fractals , Boston: Academic Press, 1988.
  • Hirsch, M. W., Smale, S. and Devaney R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, 2013.
  • Ozdemir, Y., Saltan, M. and Demir, B., The intrinsic metric on the box fractal, Bull. Iranian Math. Soc., 45(5) (2018), 1269-1281. Doi: 10.1007/s41980-018-00197-w.
  • Peitgen, H. O., Jürgens, H. and Saupe, D., Chaos and Fractals, New Frontiers of Science, 2nd ed. Springer-Verlag, 2004.
  • Saltan, M., Özdemir, Y., and Demir, B., Geodesic of the Sierpinski gasket, Fractals, 26(3) (2018), 1850024. Doi: 10.1142/S0218348X1850024X.
  • Saltan, M., Özdemir, Y. and Demir, B., An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation, Turkish J. Math., 42 (2018), 716-725. Doi:10.3906/mat-1702-55.
  • Saltan, M., Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6) (2018), 204. Doi: 10.3390/sym10060204.
  • Saltan, M., Aslan, N. and Demir, B., A discrete chaotic dynamical system on the Sierpinski gasket, Turkish J. Math., 43 (2019), 361-372. Doi: 10.3906/mat-1803-77.

Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron

Yıl 2023, , 229 - 239, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1126635

Öz

In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.

Kaynakça

  • Alligood, K. T., Sauer, T. D., and Yorke, J. A., CHAOS: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.
  • Aslan, N., Saltan, M., and Demir, B., A different construction of the classical fractals via the escape time algorithm, Journal of Abstract and Computational Mathematics, 3(4) (2018), 1–15.
  • Aslan, N., Saltan, M., and Demir, B., The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron, Chaos, Solitons and Fractals, 123 (2019), 422-428. Doi:10.1016/j.chaos.2019.04.018.
  • Barnsley, M., Fractals Everywhere, 2nd ed. Academic Press, San Diego, 1988.
  • Cristea, L. L., Steinsky B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae, 85 (2013), 201-219. Doi: 10.1007/s00010-013-0197-7.
  • Devaney, R. L., An introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
  • Devaney, R. L., Look D. M., Symbolic dynamics for a Sierpinski curve Julia set, J. Differ. Equ. Appl., 11(7) (2005), 581-596. Doi: 10.1080/10236190412331334473.
  • Ercai, C., Chaos for the Sierpinski carpet, J. Stat. Phys., 88 (1997), 979-984.
  • Gu, J., Ye, Q., and Xi, L., Geodesics of higher dimensional Sierpinski gasket, Fractals, 27(4) (2019), 1950049. Doi: 10.1142/S0218348X1950049X.
  • Gulick, D., Encounters with Chaos and Fractals , Boston: Academic Press, 1988.
  • Hirsch, M. W., Smale, S. and Devaney R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, 2013.
  • Ozdemir, Y., Saltan, M. and Demir, B., The intrinsic metric on the box fractal, Bull. Iranian Math. Soc., 45(5) (2018), 1269-1281. Doi: 10.1007/s41980-018-00197-w.
  • Peitgen, H. O., Jürgens, H. and Saupe, D., Chaos and Fractals, New Frontiers of Science, 2nd ed. Springer-Verlag, 2004.
  • Saltan, M., Özdemir, Y., and Demir, B., Geodesic of the Sierpinski gasket, Fractals, 26(3) (2018), 1850024. Doi: 10.1142/S0218348X1850024X.
  • Saltan, M., Özdemir, Y. and Demir, B., An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation, Turkish J. Math., 42 (2018), 716-725. Doi:10.3906/mat-1702-55.
  • Saltan, M., Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6) (2018), 204. Doi: 10.3390/sym10060204.
  • Saltan, M., Aslan, N. and Demir, B., A discrete chaotic dynamical system on the Sierpinski gasket, Turkish J. Math., 43 (2019), 361-372. Doi: 10.3906/mat-1803-77.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Research Article
Yazarlar

Nisa Aslan 0000-0002-2103-0511

Mustafa Saltan 0000-0002-3252-3012

Bünyamin Demir 0000-0002-2560-8392

Yayımlanma Tarihi 30 Mart 2023
Gönderilme Tarihi 6 Haziran 2022
Kabul Tarihi 22 Eylül 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aslan, N., Saltan, M., & Demir, B. (2023). Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 229-239. https://doi.org/10.31801/cfsuasmas.1126635
AMA Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Mart 2023;72(1):229-239. doi:10.31801/cfsuasmas.1126635
Chicago Aslan, Nisa, Mustafa Saltan, ve Bünyamin Demir. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 1 (Mart 2023): 229-39. https://doi.org/10.31801/cfsuasmas.1126635.
EndNote Aslan N, Saltan M, Demir B (01 Mart 2023) Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 229–239.
IEEE N. Aslan, M. Saltan, ve B. Demir, “Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 1, ss. 229–239, 2023, doi: 10.31801/cfsuasmas.1126635.
ISNAD Aslan, Nisa vd. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (Mart 2023), 229-239. https://doi.org/10.31801/cfsuasmas.1126635.
JAMA Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:229–239.
MLA Aslan, Nisa vd. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 1, 2023, ss. 229-3, doi:10.31801/cfsuasmas.1126635.
Vancouver Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):229-3.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.