Research Article
BibTex RIS Cite

Year 2020, Volume: 69 Issue: 1, 369 - 375, 30.06.2020
https://izlik.org/JA73SD88MP

Abstract

References

  • Koshy, T. Fibonacci and Lucas numbers with applications, Wiley, Newyork, 2001.
  • Horadam, A. F. Complex Fibonacci numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70 (1963), 289-291.
  • Iyer, M. R. A note on Fibonacci Quaternions, The Fib. Quarterly, 3 (1969), 225-229.
  • Swamy, M. N. S. On generalized Fibonacci quaternions, The Fib. Quarterly, 5 (1973), 547-550.
  • Halıcı, S. On Fibonacci Quaterions, Adv. Appl. Clifford Algebras, 12 (2012), 321-327.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Split Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 535-545.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Fibonacci Generalized Quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631-641.
  • Tan, E., Yılmaz, S., Şahin, M. A new generalization of Fibonacci quaternions, Chaos Solitions Fractals, 82 2016, 1-4.
  • Tan, E., Yılmaz, S., Şahin, M. A Note on bi-periodic Fibonacci and Lucas quaternions, Chaos Solitions Fractals, 85 2016, 138-142.
  • Tan, E., Sahin, M., Yilmaz, S. The generalized bi-periodic Fibonacci quaternions and octonions. Novi Sad J. Math. doi.org/10.30755/NSJOM.07284.
  • Morais, J. P., Georgiev, S., Spröbig, W. Real Quaternionic Calculus Handbook, Birkhauser, London, 2014.

More identities for Fibonacci and Lucas quaternions

Year 2020, Volume: 69 Issue: 1, 369 - 375, 30.06.2020
https://izlik.org/JA73SD88MP

Abstract

In this paper, we define the associate matrix as%
\begin{equation*}
F=\left( 
\begin{array}{cc}
1+i+2j+3k & i+j+2k \\ 
i+j+2k & 1+j+k%
\end{array}%
\right) .
\end{equation*}%
By the means of the matrix $F,$ we give several identities about Fibonacci
and Lucas quaternions by matrix methods. Since there are two different
determinant definitions of a quaternion square matrix (whose entries are
quaternions), we obtain different Cassini identities for Fibonacci and Lucas
quaternions apart from Cassini identities that given in the papers \cite%
{halici} and \cite{akyigit2}.

References

  • Koshy, T. Fibonacci and Lucas numbers with applications, Wiley, Newyork, 2001.
  • Horadam, A. F. Complex Fibonacci numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70 (1963), 289-291.
  • Iyer, M. R. A note on Fibonacci Quaternions, The Fib. Quarterly, 3 (1969), 225-229.
  • Swamy, M. N. S. On generalized Fibonacci quaternions, The Fib. Quarterly, 5 (1973), 547-550.
  • Halıcı, S. On Fibonacci Quaterions, Adv. Appl. Clifford Algebras, 12 (2012), 321-327.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Split Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 535-545.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Fibonacci Generalized Quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631-641.
  • Tan, E., Yılmaz, S., Şahin, M. A new generalization of Fibonacci quaternions, Chaos Solitions Fractals, 82 2016, 1-4.
  • Tan, E., Yılmaz, S., Şahin, M. A Note on bi-periodic Fibonacci and Lucas quaternions, Chaos Solitions Fractals, 85 2016, 138-142.
  • Tan, E., Sahin, M., Yilmaz, S. The generalized bi-periodic Fibonacci quaternions and octonions. Novi Sad J. Math. doi.org/10.30755/NSJOM.07284.
  • Morais, J. P., Georgiev, S., Spröbig, W. Real Quaternionic Calculus Handbook, Birkhauser, London, 2014.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Nurettin Irmak 0000-0003-0409-4342

Submission Date July 4, 2018
Acceptance Date October 31, 2019
Publication Date June 30, 2020
IZ https://izlik.org/JA73SD88MP
Published in Issue Year 2020 Volume: 69 Issue: 1

Cite

APA Irmak, N. (2020). More identities for Fibonacci and Lucas quaternions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 369-375. https://izlik.org/JA73SD88MP
AMA 1.Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):369-375. https://izlik.org/JA73SD88MP
Chicago Irmak, Nurettin. 2020. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (1): 369-75. https://izlik.org/JA73SD88MP.
EndNote Irmak N (June 1, 2020) More identities for Fibonacci and Lucas quaternions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 369–375.
IEEE [1]N. Irmak, “More identities for Fibonacci and Lucas quaternions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 369–375, June 2020, [Online]. Available: https://izlik.org/JA73SD88MP
ISNAD Irmak, Nurettin. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 1, 2020): 369-375. https://izlik.org/JA73SD88MP.
JAMA 1.Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:369–375.
MLA Irmak, Nurettin. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, June 2020, pp. 369-75, https://izlik.org/JA73SD88MP.
Vancouver 1.Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. [Internet]. 2020 June 1;69(1):369-75. Available from: https://izlik.org/JA73SD88MP

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.