Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra (2007), 35(3), 953--963.
Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra (2008), 36(8), 2862--2871.
Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969.
aydougdu2013rings : Aydoğdu, P., Rings over which every module has a flat δ-cover, Turkish J. Math. (2013), 37(1), 182--194.
Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. (1960), 95, 466--488.
Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
Büyükaşık, E. and Lomp, C., When δ-semiperfect rings are semiperfect, Turkish J. Math. (2010), 34(3):317--324.
Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. (2016), 42(6), 1441--1450.
Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), 39(3), 189--209.
Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
Lomp, C., On semilocal modules and rings, Comm. Algebra (1999), 27(4), 1921--1935.
Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. (2000), 7(3), 305--318.
We say that a ring R is right generalized δ-semiperfect if every simple right R-module is an epimorphic image of a flat right R-module with δ-small kernel. This definition gives a generalization of both right δ-semiperfect rings and right generalized semiperfect rings. We provide examples involving such rings along with some of their properties. We introduce flat strong δ-cover of a module as a flat cover which is also a flat δ-cover and use flat strong δ-covers in characterizing right A-perfect rings, right B-perfect rings and right perfect rings.
Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra (2007), 35(3), 953--963.
Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra (2008), 36(8), 2862--2871.
Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969.
aydougdu2013rings : Aydoğdu, P., Rings over which every module has a flat δ-cover, Turkish J. Math. (2013), 37(1), 182--194.
Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. (1960), 95, 466--488.
Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
Büyükaşık, E. and Lomp, C., When δ-semiperfect rings are semiperfect, Turkish J. Math. (2010), 34(3):317--324.
Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. (2016), 42(6), 1441--1450.
Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), 39(3), 189--209.
Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
Lomp, C., On semilocal modules and rings, Comm. Algebra (1999), 27(4), 1921--1935.
Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. (2000), 7(3), 305--318.
Demirci, Y. M. (2019). Flat Strong δ-covers of Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 43-52. https://doi.org/10.31801/cfsuasmas.443540
AMA
Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):43-52. doi:10.31801/cfsuasmas.443540
Chicago
Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 43-52. https://doi.org/10.31801/cfsuasmas.443540.
EndNote
Demirci YM (February 1, 2019) Flat Strong δ-covers of Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 43–52.
IEEE
Y. M. Demirci, “Flat Strong δ-covers of Modules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 43–52, 2019, doi: 10.31801/cfsuasmas.443540.
ISNAD
Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 43-52. https://doi.org/10.31801/cfsuasmas.443540.
JAMA
Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:43–52.
MLA
Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 43-52, doi:10.31801/cfsuasmas.443540.
Vancouver
Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):43-52.