Research Article
BibTex RIS Cite
Year 2019, , 43 - 52, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443540

Abstract

References

  • Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra (2007), 35(3), 953--963.
  • Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra (2008), 36(8), 2862--2871.
  • Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
  • Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969. aydougdu2013rings : Aydoğdu, P., Rings over which every module has a flat δ-cover, Turkish J. Math. (2013), 37(1), 182--194.
  • Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. (1960), 95, 466--488.
  • Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
  • Büyükaşık, E. and Lomp, C., When δ-semiperfect rings are semiperfect, Turkish J. Math. (2010), 34(3):317--324.
  • Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. (2016), 42(6), 1441--1450.
  • Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), 39(3), 189--209.
  • Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
  • Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
  • Lomp, C., On semilocal modules and rings, Comm. Algebra (1999), 27(4), 1921--1935.
  • Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
  • Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. (2000), 7(3), 305--318.

Flat Strong δ-covers of Modules

Year 2019, , 43 - 52, 01.02.2019
https://doi.org/10.31801/cfsuasmas.443540

Abstract

We say that a ring R is right generalized δ-semiperfect if every simple right R-module is an epimorphic image of a flat right R-module with δ-small kernel. This definition gives a generalization of both right δ-semiperfect rings and right generalized semiperfect rings. We provide examples involving such rings along with some of their properties. We introduce flat strong δ-cover of a module as a flat cover which is also a flat δ-cover and use flat strong δ-covers in characterizing right A-perfect rings, right B-perfect rings and right perfect rings.

References

  • Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra (2007), 35(3), 953--963.
  • Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra (2008), 36(8), 2862--2871.
  • Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
  • Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969. aydougdu2013rings : Aydoğdu, P., Rings over which every module has a flat δ-cover, Turkish J. Math. (2013), 37(1), 182--194.
  • Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. (1960), 95, 466--488.
  • Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
  • Büyükaşık, E. and Lomp, C., When δ-semiperfect rings are semiperfect, Turkish J. Math. (2010), 34(3):317--324.
  • Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. (2016), 42(6), 1441--1450.
  • Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), 39(3), 189--209.
  • Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
  • Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
  • Lomp, C., On semilocal modules and rings, Comm. Algebra (1999), 27(4), 1921--1935.
  • Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
  • Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. (2000), 7(3), 305--318.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Yılmaz Mehmet Demirci 0000-0003-3802-4211

Publication Date February 1, 2019
Submission Date April 2, 2017
Acceptance Date November 22, 2017
Published in Issue Year 2019

Cite

APA Demirci, Y. M. (2019). Flat Strong δ-covers of Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 43-52. https://doi.org/10.31801/cfsuasmas.443540
AMA Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):43-52. doi:10.31801/cfsuasmas.443540
Chicago Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 43-52. https://doi.org/10.31801/cfsuasmas.443540.
EndNote Demirci YM (February 1, 2019) Flat Strong δ-covers of Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 43–52.
IEEE Y. M. Demirci, “Flat Strong δ-covers of Modules”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 43–52, 2019, doi: 10.31801/cfsuasmas.443540.
ISNAD Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 43-52. https://doi.org/10.31801/cfsuasmas.443540.
JAMA Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:43–52.
MLA Demirci, Yılmaz Mehmet. “Flat Strong δ-Covers of Modules”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 43-52, doi:10.31801/cfsuasmas.443540.
Vancouver Demirci YM. Flat Strong δ-covers of Modules. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):43-52.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.