Research Article
BibTex RIS Cite

Harary energy of complement of line graphs of regular graphs

Year 2020, , 1215 - 1220, 31.12.2020
https://doi.org/10.31801/cfsuasmas.630087

Abstract

The Harary matrix of a graph $G$ is defined as $H(G) = [h_{ij}]$, where $h_{ij} =\frac{1}{d(v_i, v_j)}$, if $i \neq j$ and $h_{ij} = 0$, otherwise, where $d(v_i, v_j)$ is the distance between the vertices $v_i$ and $v_j$ in $G$. The $H$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of Harary matrix. Two graphs are said to be $H$-equienergetic if they have same $H$-energy. In this paper we obtain the $H$-energy of the complement of line graphs of certian regular graphs interms of the order and regularity of a graph and thus constructs pairs of $H$-equienergetic graphs of same order and having different $H$-eigenvalues.

Supporting Institution

University Grants Commission (UGC), New Delhi

Project Number

F.510/3/ DRS-III /2016 (SAP-I)

Thanks

The author HSR is thankful to the University Grants Commission (UGC), New Delhi, for support through UGC-SAP DRS-III, 2016-2021: F.510/3/ DRS-III /2016 (SAP-I).

References

  • Buckley, F., Iterated line graphs, Congr. Numer., 33 (1981), 390--394.
  • Buckley, F., The size of iterated line graphs, Graph Theory Notes New York, 25 (1993), 33--36.
  • Cui, Z., Liu, B., On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem., 68 (2012), 815-823.
  • Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
  • Güngör, A. D., Çevik, A. S., On the Harary energy and Harary Estrada index of a graph, MATCH Commun. Math. Comput. Chem., 64 (2010), 280-296.
  • Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
  • Harary, F., Graph Theory, Addison--Wesley, Reading, 1969.
  • Indulal, G., D-spectrum and D-energy of complements of iterated line graphs of regular graphs, J. Alg. Stru. Appl., 4 (2017), 51-56.
  • Ivanciuc, O., Balaban, T. S., Balaban A. T., Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12 (1993), 309-318.
  • Li, X., Shi Y., Gutman, I., Graph Energy, Springer, New York, 2012.
  • Plavšić, D., Nikolić, S., Trinajstić N., On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235-250.
  • Ramane, H. S., Manjalapur V. V., Harary equienergetic graphs, Int. J. Math. Arch., 6 (2015), 81-86.
  • Ramane, H. S., Jummannaver, R. B., Harary spectra and Harary energy of line graphs of regular graphs, Gulf J. Math., 4 (2016), 39-46.
  • Sachs, H., Über selbstkomplementare Graphen, Publ. Math. Debrecen, 9 (1962), 270-288.
  • Sachs, H., Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau, 13 (1967), 405-412.
  • Xu, K., Das, K. C., Trinajstić, N., The Harary Index of a Graph, Springer, Heidelberg, 2015.
Year 2020, , 1215 - 1220, 31.12.2020
https://doi.org/10.31801/cfsuasmas.630087

Abstract

Project Number

F.510/3/ DRS-III /2016 (SAP-I)

References

  • Buckley, F., Iterated line graphs, Congr. Numer., 33 (1981), 390--394.
  • Buckley, F., The size of iterated line graphs, Graph Theory Notes New York, 25 (1993), 33--36.
  • Cui, Z., Liu, B., On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem., 68 (2012), 815-823.
  • Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
  • Güngör, A. D., Çevik, A. S., On the Harary energy and Harary Estrada index of a graph, MATCH Commun. Math. Comput. Chem., 64 (2010), 280-296.
  • Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
  • Harary, F., Graph Theory, Addison--Wesley, Reading, 1969.
  • Indulal, G., D-spectrum and D-energy of complements of iterated line graphs of regular graphs, J. Alg. Stru. Appl., 4 (2017), 51-56.
  • Ivanciuc, O., Balaban, T. S., Balaban A. T., Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12 (1993), 309-318.
  • Li, X., Shi Y., Gutman, I., Graph Energy, Springer, New York, 2012.
  • Plavšić, D., Nikolić, S., Trinajstić N., On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235-250.
  • Ramane, H. S., Manjalapur V. V., Harary equienergetic graphs, Int. J. Math. Arch., 6 (2015), 81-86.
  • Ramane, H. S., Jummannaver, R. B., Harary spectra and Harary energy of line graphs of regular graphs, Gulf J. Math., 4 (2016), 39-46.
  • Sachs, H., Über selbstkomplementare Graphen, Publ. Math. Debrecen, 9 (1962), 270-288.
  • Sachs, H., Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau, 13 (1967), 405-412.
  • Xu, K., Das, K. C., Trinajstić, N., The Harary Index of a Graph, Springer, Heidelberg, 2015.
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Harishchandra Ramane 0000-0003-3122-1669

K. Ashoka This is me 0000-0002-0248-207X

Project Number F.510/3/ DRS-III /2016 (SAP-I)
Publication Date December 31, 2020
Submission Date October 7, 2019
Acceptance Date June 28, 2020
Published in Issue Year 2020

Cite

APA Ramane, H., & Ashoka, K. (2020). Harary energy of complement of line graphs of regular graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1215-1220. https://doi.org/10.31801/cfsuasmas.630087
AMA Ramane H, Ashoka K. Harary energy of complement of line graphs of regular graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1215-1220. doi:10.31801/cfsuasmas.630087
Chicago Ramane, Harishchandra, and K. Ashoka. “Harary Energy of Complement of Line Graphs of Regular Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1215-20. https://doi.org/10.31801/cfsuasmas.630087.
EndNote Ramane H, Ashoka K (December 1, 2020) Harary energy of complement of line graphs of regular graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1215–1220.
IEEE H. Ramane and K. Ashoka, “Harary energy of complement of line graphs of regular graphs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1215–1220, 2020, doi: 10.31801/cfsuasmas.630087.
ISNAD Ramane, Harishchandra - Ashoka, K. “Harary Energy of Complement of Line Graphs of Regular Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1215-1220. https://doi.org/10.31801/cfsuasmas.630087.
JAMA Ramane H, Ashoka K. Harary energy of complement of line graphs of regular graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1215–1220.
MLA Ramane, Harishchandra and K. Ashoka. “Harary Energy of Complement of Line Graphs of Regular Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1215-20, doi:10.31801/cfsuasmas.630087.
Vancouver Ramane H, Ashoka K. Harary energy of complement of line graphs of regular graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1215-20.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.