Research Article
BibTex RIS Cite
Year 2022, , 445 - 455, 30.06.2022
https://doi.org/10.31801/cfsuasmas.874855

Abstract

References

  • Adamaszek, M., Splittings of independence complexes and the powers of cycles, J. Comb. Theory Ser. A., 119(5) (2012), 1031–1047. https://doi.org/10.1016/j.jcta.2012.01.009
  • Bjorner, A., Wachs, M., Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4) (1996), 1299–1327. https://doi.org/10.1090/s0002-9947-96-01534-6
  • Bıyıkoglu, T., Civan, Y., Vertex decomposable graphs, codismantlability, Cohen–Macaulayness and Castelnuovo–Mumford regularity, Electron. J. Combin., 21(1) (2014). https://doi.org/10.37236/2387
  • Civan, Y., Deniz, Z., Yetim, M. A., Chordal bipartite graphs, biclique vertex partitions and Castelnuovo-Mumford regularity of 1-subdivison graphs, Manuscript in preparation (2021).
  • Dahlhaus, E., Generalized strongly chordal graphs, Technical Report, Basser Department of Computer Science, University of Sydney, 1993, 15 pp.
  • Dragan, F. F., Strongly orderable graphs A common generalization of strongly chordal and chordal bipartite graphs, Discrete Appl. Math., 99 (1-3) (2000), 427–442. https://doi.org/10.1016/S0166-218X(99)00149-3
  • Duginov, O., Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs, Discrete Math. Theor. Comput. Sci., 16(3) (2014), 203–214. https://doi.org/10.46298/dmtcs.2090
  • Ehrenborg, R., Hetyei, G., The topology of the independence complex, European J. Combin., 27(6) (2006), 906–923. https://doi.org/10.1016/j.ejc.2005.04.010
  • Engstrom, A., Complexes of directed trees and independence complexes, Discrete Math., 309 (2009), 3299–3309. https://doi.org/10.1016/j.disc.2008.09.033
  • Farber, M., Characterizations of strongly chordal graphs, Discrete Math., 43(2-3) (1983),173–189. https://doi.org/10.1016/0012-365X(83)90154-1
  • Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
  • Kawamura, K., Independence complexes of chordal graphs, Discrete Math., 310 (2009), 2204–2211. https://doi.org/10.1016/j.disc.2010.04.021
  • Marietti, M., Testa, D., A uniform approach to complexes arising from forests, Electron. J. Comb., 15 (2008). https://doi.org/10.37236/825
  • Nagel, U., Reiner, V., Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Comb., 16(2) (2009). https://doi.org/10.37236/69
  • Uehara, R., Linear time algorithms on chordal bipartite and strongly chordal graphs, In:Automata, Languages and Programming, Lecture Notes in Computer Science, Volume 2380, Springer, 2002, pp. 993–1004. https://doi.org/10.1007/3-540-45465-9 85

Independence complexes of strongly orderable graphs

Year 2022, , 445 - 455, 30.06.2022
https://doi.org/10.31801/cfsuasmas.874855

Abstract

We prove that for any finite strongly orderable (generalized strongly chordal) graph G, the independence complex Ind(G) is either contractible or homotopy equivalent to a wedge of spheres of dimension at least bp(G)−1, where bp(G) is the biclique vertex partition number of G. In particular, we show that if G is a chordal bipartite graph, then Ind(G) is either contractible or homotopy equivalent to a sphere of dimension at least bp(G) − 1.

References

  • Adamaszek, M., Splittings of independence complexes and the powers of cycles, J. Comb. Theory Ser. A., 119(5) (2012), 1031–1047. https://doi.org/10.1016/j.jcta.2012.01.009
  • Bjorner, A., Wachs, M., Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4) (1996), 1299–1327. https://doi.org/10.1090/s0002-9947-96-01534-6
  • Bıyıkoglu, T., Civan, Y., Vertex decomposable graphs, codismantlability, Cohen–Macaulayness and Castelnuovo–Mumford regularity, Electron. J. Combin., 21(1) (2014). https://doi.org/10.37236/2387
  • Civan, Y., Deniz, Z., Yetim, M. A., Chordal bipartite graphs, biclique vertex partitions and Castelnuovo-Mumford regularity of 1-subdivison graphs, Manuscript in preparation (2021).
  • Dahlhaus, E., Generalized strongly chordal graphs, Technical Report, Basser Department of Computer Science, University of Sydney, 1993, 15 pp.
  • Dragan, F. F., Strongly orderable graphs A common generalization of strongly chordal and chordal bipartite graphs, Discrete Appl. Math., 99 (1-3) (2000), 427–442. https://doi.org/10.1016/S0166-218X(99)00149-3
  • Duginov, O., Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs, Discrete Math. Theor. Comput. Sci., 16(3) (2014), 203–214. https://doi.org/10.46298/dmtcs.2090
  • Ehrenborg, R., Hetyei, G., The topology of the independence complex, European J. Combin., 27(6) (2006), 906–923. https://doi.org/10.1016/j.ejc.2005.04.010
  • Engstrom, A., Complexes of directed trees and independence complexes, Discrete Math., 309 (2009), 3299–3309. https://doi.org/10.1016/j.disc.2008.09.033
  • Farber, M., Characterizations of strongly chordal graphs, Discrete Math., 43(2-3) (1983),173–189. https://doi.org/10.1016/0012-365X(83)90154-1
  • Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
  • Kawamura, K., Independence complexes of chordal graphs, Discrete Math., 310 (2009), 2204–2211. https://doi.org/10.1016/j.disc.2010.04.021
  • Marietti, M., Testa, D., A uniform approach to complexes arising from forests, Electron. J. Comb., 15 (2008). https://doi.org/10.37236/825
  • Nagel, U., Reiner, V., Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Comb., 16(2) (2009). https://doi.org/10.37236/69
  • Uehara, R., Linear time algorithms on chordal bipartite and strongly chordal graphs, In:Automata, Languages and Programming, Lecture Notes in Computer Science, Volume 2380, Springer, 2002, pp. 993–1004. https://doi.org/10.1007/3-540-45465-9 85
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mehmet Akif Yetim 0000-0002-3482-5137

Publication Date June 30, 2022
Submission Date February 5, 2021
Acceptance Date December 11, 2021
Published in Issue Year 2022

Cite

APA Yetim, M. A. (2022). Independence complexes of strongly orderable graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2), 445-455. https://doi.org/10.31801/cfsuasmas.874855
AMA Yetim MA. Independence complexes of strongly orderable graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2022;71(2):445-455. doi:10.31801/cfsuasmas.874855
Chicago Yetim, Mehmet Akif. “Independence Complexes of Strongly Orderable Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 2 (June 2022): 445-55. https://doi.org/10.31801/cfsuasmas.874855.
EndNote Yetim MA (June 1, 2022) Independence complexes of strongly orderable graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 2 445–455.
IEEE M. A. Yetim, “Independence complexes of strongly orderable graphs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 2, pp. 445–455, 2022, doi: 10.31801/cfsuasmas.874855.
ISNAD Yetim, Mehmet Akif. “Independence Complexes of Strongly Orderable Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/2 (June 2022), 445-455. https://doi.org/10.31801/cfsuasmas.874855.
JAMA Yetim MA. Independence complexes of strongly orderable graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:445–455.
MLA Yetim, Mehmet Akif. “Independence Complexes of Strongly Orderable Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 2, 2022, pp. 445-5, doi:10.31801/cfsuasmas.874855.
Vancouver Yetim MA. Independence complexes of strongly orderable graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(2):445-5.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.