Research Article
BibTex RIS Cite

Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$

Year 2022, , 326 - 338, 30.06.2022
https://doi.org/10.31801/cfsuasmas.950707

Abstract

In this study, we define (1,3)-Bertrand-direction curve and (1,3)-Bertrand-donor curve in the 4-dimensional Euclidean space $E^{4}$. We introduce necessary and sufficient conditions for a special Frenet curve to have a (1,3)-Bertrand-direction curve. We introduce the relations between Frenet vectors and curvatures of these direction curves. Furthermore, we investigate whether (1,3)-evolute-donor curves in $E^{4}$ exist and show that there is no (1,3)-evolute-donor curve in $E^{4}$ .

References

  • Bertrand, J., Memoire sur la theorie des courbes a double courbure, Comptes Rendus 36, Journal de Mathematiques Pures et Appliquees., 15 (1850), 332-350.
  • Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218 (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
  • Fuchs, D., Evolutes and involutes of spatial curves, American Mathematical Monthly, 120(3) (2013), 217-231. https://doi.org/10.4169/amer.math.monthly.120.03.217
  • Fukunaga, T., Takahashi, M., Evolutes and involutes of frontals in the euclidean plane, Demonstratio Mathematica, 48(2) (2015), 147-166. https://doi.org/10.1515/dema-2015-0015
  • Fukunaga, T., Takahashi, M., Involutes of fronts in the Euclidean plane, Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(3) (2016), 637-653. https://doi.org/10.1007/s13366-015-0275-1
  • Gere, B.H., Zupnik, D., On the construction of curves of constant width, Studies in Applied Mathematics, 22(1-4) (1943), 31-36.
  • Hanif, M., Hou, Z.H., Generalized involute and evolute curve-couple in Euclidean space, Int. J. Open Problems Compt. Math., 11(2) (2018), 28-39.
  • Huygens, C., Horologium oscillatorium sive de motu pendulorum ad horologia aptato, Demonstrationes Geometricae, 1673.
  • Li, Y., Sun, G.Y., Evolutes of fronts in the Minkowski Plane, Mathematical Methods in the Applied Science, 42(16) 2018, 5416-5426. https://doi.org/10.1002/mma.5402
  • Macit, N., Düldül, M., Some new associated curves of a Frenet curve in $E^{3}$ and $E^{4}$, Turk J Math., 38 (2014), 1023-1037. https://doi.org/10.3906/mat-1401-85
  • Matsuda, H., Yorozu, S., On generalized Mannheim curves in Euclidean 4-space, Nihonkai Math. J., 20 (2009), 33-56.
  • Matsuda, H., Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41-58.
  • Nutbourne, A.W., Martin, R.R., Differential Geometry Applied to Design of Curves and Surfaces, Ellis Horwood, Chichester, UK, 1988.
  • Önder, M., Construction of curve pairs and their applications, Natl. Acad. Sci., India, Sect. A Phys. Sci., 91(1) 2021, 21-28. https://doi.org/10.1007/s40010-019-00643-2
  • Öztürk, G., Arslan, K., Bulca, B., A Characterization of involutes and evolutes of a given curve in En. Kyungpook Math. J., 58 (2018), 117-135.
  • Özyılmaz, E., Yılmaz, S., Involute-evolute curve couples in the Euclidean 4-space, Int. J. Open Problems Compt. Math., 2(2) (2009), 168-174.
  • Struik, D.J., Lectures on Classical Differential Geometry, 2nd ed. Addison Wesley, Dover, 1988.
  • Yu, H., Pei, D., Cui, X., Evolutes of fronts on Euclidean 2-sphere, J. Nonlinear Sci. Appl., 8 (2015), 678-686. http://dx.doi.org/10.22436/jnsa.008.05.20
Year 2022, , 326 - 338, 30.06.2022
https://doi.org/10.31801/cfsuasmas.950707

Abstract

References

  • Bertrand, J., Memoire sur la theorie des courbes a double courbure, Comptes Rendus 36, Journal de Mathematiques Pures et Appliquees., 15 (1850), 332-350.
  • Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218 (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
  • Fuchs, D., Evolutes and involutes of spatial curves, American Mathematical Monthly, 120(3) (2013), 217-231. https://doi.org/10.4169/amer.math.monthly.120.03.217
  • Fukunaga, T., Takahashi, M., Evolutes and involutes of frontals in the euclidean plane, Demonstratio Mathematica, 48(2) (2015), 147-166. https://doi.org/10.1515/dema-2015-0015
  • Fukunaga, T., Takahashi, M., Involutes of fronts in the Euclidean plane, Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(3) (2016), 637-653. https://doi.org/10.1007/s13366-015-0275-1
  • Gere, B.H., Zupnik, D., On the construction of curves of constant width, Studies in Applied Mathematics, 22(1-4) (1943), 31-36.
  • Hanif, M., Hou, Z.H., Generalized involute and evolute curve-couple in Euclidean space, Int. J. Open Problems Compt. Math., 11(2) (2018), 28-39.
  • Huygens, C., Horologium oscillatorium sive de motu pendulorum ad horologia aptato, Demonstrationes Geometricae, 1673.
  • Li, Y., Sun, G.Y., Evolutes of fronts in the Minkowski Plane, Mathematical Methods in the Applied Science, 42(16) 2018, 5416-5426. https://doi.org/10.1002/mma.5402
  • Macit, N., Düldül, M., Some new associated curves of a Frenet curve in $E^{3}$ and $E^{4}$, Turk J Math., 38 (2014), 1023-1037. https://doi.org/10.3906/mat-1401-85
  • Matsuda, H., Yorozu, S., On generalized Mannheim curves in Euclidean 4-space, Nihonkai Math. J., 20 (2009), 33-56.
  • Matsuda, H., Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41-58.
  • Nutbourne, A.W., Martin, R.R., Differential Geometry Applied to Design of Curves and Surfaces, Ellis Horwood, Chichester, UK, 1988.
  • Önder, M., Construction of curve pairs and their applications, Natl. Acad. Sci., India, Sect. A Phys. Sci., 91(1) 2021, 21-28. https://doi.org/10.1007/s40010-019-00643-2
  • Öztürk, G., Arslan, K., Bulca, B., A Characterization of involutes and evolutes of a given curve in En. Kyungpook Math. J., 58 (2018), 117-135.
  • Özyılmaz, E., Yılmaz, S., Involute-evolute curve couples in the Euclidean 4-space, Int. J. Open Problems Compt. Math., 2(2) (2009), 168-174.
  • Struik, D.J., Lectures on Classical Differential Geometry, 2nd ed. Addison Wesley, Dover, 1988.
  • Yu, H., Pei, D., Cui, X., Evolutes of fronts on Euclidean 2-sphere, J. Nonlinear Sci. Appl., 8 (2015), 678-686. http://dx.doi.org/10.22436/jnsa.008.05.20
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mehmet Önder 0000-0002-9354-5530

Publication Date June 30, 2022
Submission Date June 10, 2021
Acceptance Date October 11, 2021
Published in Issue Year 2022

Cite

APA Önder, M. (2022). Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2), 326-338. https://doi.org/10.31801/cfsuasmas.950707
AMA Önder M. Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2022;71(2):326-338. doi:10.31801/cfsuasmas.950707
Chicago Önder, Mehmet. “Direction Curves of Generalized Bertrand Curves and Involute-Evolute Curves in $E^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 2 (June 2022): 326-38. https://doi.org/10.31801/cfsuasmas.950707.
EndNote Önder M (June 1, 2022) Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 2 326–338.
IEEE M. Önder, “Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 2, pp. 326–338, 2022, doi: 10.31801/cfsuasmas.950707.
ISNAD Önder, Mehmet. “Direction Curves of Generalized Bertrand Curves and Involute-Evolute Curves in $E^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/2 (June 2022), 326-338. https://doi.org/10.31801/cfsuasmas.950707.
JAMA Önder M. Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:326–338.
MLA Önder, Mehmet. “Direction Curves of Generalized Bertrand Curves and Involute-Evolute Curves in $E^{4}$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 2, 2022, pp. 326-38, doi:10.31801/cfsuasmas.950707.
Vancouver Önder M. Direction curves of generalized Bertrand curves and involute-evolute curves in $E^{4}$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(2):326-38.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.