Research Article
BibTex RIS Cite

On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators

Year 2019, Volume: 68 Issue: 1, 283 - 298, 01.02.2019
https://doi.org/10.31801/cfsuasmas.415926

Abstract

In this paper, we introduce complex modified genuine Szász-Durrmeyer-Stancu operators to improve the results obtained in [4] and present overconvergence properties of these operators. We obtain some estimates on the rate of convergence, a Voronovskaja-type result and the exact order of approximation for these operators attached to analytic functions of exponential growth on compact disks.

References

  • Agrawal P.N. and Gupta V., On convergence of derivatives of Phillips operators, Demonstratio Math. 27 (2), 501-510 (1994).
  • Bernstein S. N., Sur la convergence de certaines suites des polynomes, J. Math. Pures Appl. 15(9), 345-358 (1935).
  • Çetin N., Approximation by complex modified Szász-Mirakjan-Stancu operators in compact disks, Filomat, 29 (5), 1007-1019 (2015).
  • Çetin N. and İspir N., Approximation properties of complex modified genuine Szász-Durrmeyer operators, Comput. Methods Funct. Theory (2014) 14:623-638.
  • Deeba E. Y., On the convergence of generalized Szasz operator on complex plane, Tamkang J. Math. 13 (1982), no. 1, 79--86.
  • Finta Z., Gupta V., Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl. 303 (2) (2005), 627-642.
  • Gal S. G., Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, 8. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. xii+337 pp. ISBN: 978-981-4282-42-0.
  • Gal S. G., Approximation by complex genuine Durrmeyer type polynomials in compact disks, Appl. Math. Comput. 217 (2010) 1913-1920.
  • Gal S. G., Gupta V., Approximation by Complex Durrmeyer Type Operators in Compact Disks, Mathematics Without Boundaries, in:P. Pardalos, T.M. Rassias (Eds.), Surveys in Interdisciplinary Research, Springer, 2014.
  • Gergen J. J., Dressel F. G. and Purcell W.H., Convergence of extended Bernstein polynomials in the complex domain, Pacific J. Math. 13 (4) (1963) 1171-1180.
  • Gupta V., Tachev G. , Approximation by linear combinations of complex Phillips operators in compact disks, Results. Math., DOI 10.1007/s00025-014-0377-3.
  • Gupta V. and Verma D. K., Approximation by complex Favard-Szász-Mirakjan-Stancu operators in compact disks, Mathematical Sciences 6:25 (2012).
  • Gupta V., Complex Baskakov-Szász operators in compact semi-disks, Lobachevskii J. Math. 35(2), 65-73 (2014).
  • Heilmann M., Tachev G., Commutativity, direct and strong converse results for Phillips operators, East J. Approx. 17(3) (2011) 299-317.
  • Jakimovski A. and Leviatan D., Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj), 34 (1969), 97-103.
  • Kantorovich L. V., Sur la convergence de la suite de polynomes de S. Bernstein en dehors de l'interval fundamental. Bull. Acad. Sci. URSS 1103-1115 (1931).
  • Lorentz G. G., Bernstein Polynomials, 2nd ed., Chelsea Publ., New York (1986).
  • May C.P., On Phillips operator, J. Approx. Theory 20, 315-332 (1977).
  • Mazhar S.M., Totik V., Approximation by modified Szász operators, Acta Sci. Math. 49 (1985), 257-269.
  • Phillips R. S., An inversion formula for semi-groups of linear operators, Ann. Math. 59 (1954) 352--356.
  • Tonne, P.C., On the convergence of Bernstein polynomials for some unbounded analytic functions, Proc. Am. Math. Soc., 22,1-6.
  • Wood B., Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17(4), (1969), 790--801.
  • Wright E. M., The Bernstein approximation polynomials in the complex plane, J. Lond. Math. Soc. 5, 265-269 (1930).
Year 2019, Volume: 68 Issue: 1, 283 - 298, 01.02.2019
https://doi.org/10.31801/cfsuasmas.415926

Abstract

References

  • Agrawal P.N. and Gupta V., On convergence of derivatives of Phillips operators, Demonstratio Math. 27 (2), 501-510 (1994).
  • Bernstein S. N., Sur la convergence de certaines suites des polynomes, J. Math. Pures Appl. 15(9), 345-358 (1935).
  • Çetin N., Approximation by complex modified Szász-Mirakjan-Stancu operators in compact disks, Filomat, 29 (5), 1007-1019 (2015).
  • Çetin N. and İspir N., Approximation properties of complex modified genuine Szász-Durrmeyer operators, Comput. Methods Funct. Theory (2014) 14:623-638.
  • Deeba E. Y., On the convergence of generalized Szasz operator on complex plane, Tamkang J. Math. 13 (1982), no. 1, 79--86.
  • Finta Z., Gupta V., Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl. 303 (2) (2005), 627-642.
  • Gal S. G., Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, 8. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. xii+337 pp. ISBN: 978-981-4282-42-0.
  • Gal S. G., Approximation by complex genuine Durrmeyer type polynomials in compact disks, Appl. Math. Comput. 217 (2010) 1913-1920.
  • Gal S. G., Gupta V., Approximation by Complex Durrmeyer Type Operators in Compact Disks, Mathematics Without Boundaries, in:P. Pardalos, T.M. Rassias (Eds.), Surveys in Interdisciplinary Research, Springer, 2014.
  • Gergen J. J., Dressel F. G. and Purcell W.H., Convergence of extended Bernstein polynomials in the complex domain, Pacific J. Math. 13 (4) (1963) 1171-1180.
  • Gupta V., Tachev G. , Approximation by linear combinations of complex Phillips operators in compact disks, Results. Math., DOI 10.1007/s00025-014-0377-3.
  • Gupta V. and Verma D. K., Approximation by complex Favard-Szász-Mirakjan-Stancu operators in compact disks, Mathematical Sciences 6:25 (2012).
  • Gupta V., Complex Baskakov-Szász operators in compact semi-disks, Lobachevskii J. Math. 35(2), 65-73 (2014).
  • Heilmann M., Tachev G., Commutativity, direct and strong converse results for Phillips operators, East J. Approx. 17(3) (2011) 299-317.
  • Jakimovski A. and Leviatan D., Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj), 34 (1969), 97-103.
  • Kantorovich L. V., Sur la convergence de la suite de polynomes de S. Bernstein en dehors de l'interval fundamental. Bull. Acad. Sci. URSS 1103-1115 (1931).
  • Lorentz G. G., Bernstein Polynomials, 2nd ed., Chelsea Publ., New York (1986).
  • May C.P., On Phillips operator, J. Approx. Theory 20, 315-332 (1977).
  • Mazhar S.M., Totik V., Approximation by modified Szász operators, Acta Sci. Math. 49 (1985), 257-269.
  • Phillips R. S., An inversion formula for semi-groups of linear operators, Ann. Math. 59 (1954) 352--356.
  • Tonne, P.C., On the convergence of Bernstein polynomials for some unbounded analytic functions, Proc. Am. Math. Soc., 22,1-6.
  • Wood B., Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17(4), (1969), 790--801.
  • Wright E. M., The Bernstein approximation polynomials in the complex plane, J. Lond. Math. Soc. 5, 265-269 (1930).
There are 23 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Nursel Çetin 0000-0003-3771-6523

Publication Date February 1, 2019
Submission Date October 13, 2017
Acceptance Date December 25, 2017
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Çetin, N. (2019). On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 283-298. https://doi.org/10.31801/cfsuasmas.415926
AMA Çetin N. On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):283-298. doi:10.31801/cfsuasmas.415926
Chicago Çetin, Nursel. “On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 283-98. https://doi.org/10.31801/cfsuasmas.415926.
EndNote Çetin N (February 1, 2019) On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 283–298.
IEEE N. Çetin, “On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 283–298, 2019, doi: 10.31801/cfsuasmas.415926.
ISNAD Çetin, Nursel. “On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 283-298. https://doi.org/10.31801/cfsuasmas.415926.
JAMA Çetin N. On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:283–298.
MLA Çetin, Nursel. “On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 283-98, doi:10.31801/cfsuasmas.415926.
Vancouver Çetin N. On Complex Modified Genuine Szász-Durrmeyer-Stancu Operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):283-98.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.