Research Article
BibTex RIS Cite

Derivatives of Sasakian metric ^{S}g on Cotangent Bundle

Year 2019, Volume: 68 Issue: 1, 751 - 761, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464226

Abstract

In this paper, we define a Sasakian metric ^{S}g on cotangent bundle T^{∗}Mⁿ, which is completely determined by its action on complete lifts of vector fields. Later, we obtain the covariant and Lie derivatives applied to Sasakian metrics with respect to the complete and vertical lifts of vector and kovector fields, respectively

References

  • Akyol, M.A., Gündüzalp, Y., Semi-Slant Submersions from Almost Product Riemannian Manifolds, Gulf Journal of Mathematics, 4(3), (2016), 15-27.
  • Akyol, M.A., Gündüzalp, Y., Semi-Invariant Semi-Riemannian Submersions, Commun. Fac. Sci. Univ. Ank. Series A1, Volume 67, Number 1, (2018), 80-92.
  • Cengiz, N., Salimov, A.A., Diagonal Lift in the Tensor Bundle and its Applications, Applied Mathematics and Computation, 142, (2003), 309-319.
  • Çayır, H., Lie derivatives of almost contact structure and almost paracontact structure with respect to X^{V} and X^{H} on tangent bundle T(M), Proceedings of the Institute of Mathematics and Mechanics, 42(1), (2016), 38-49.
  • Çayır, H., Tachibana and Vishnevskii Operators Applied to X^{V} and X^{C} in Almost Paracontact Structure on Tangent Bundle T(M), Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 6(1), (2016), 67-82.
  • Çayır, H., Tachibana and Vishnevskii Operators Applied to X^{V} and X^{H} in Almost Paracontact Structure on Tangent Bundle T(M), New Trends in Mathematical Sciences, 4(3), (2016), 105-115.
  • Çayır, H., Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to X^{C} and X^{V} on Tangent Bundle T(M). New Trends in Mathematical Sciences, 4(1), (2016), 153-159.
  • Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math., 20, (2002), 1-41.
  • Musso, E., Tricerri, F., Riemannian Metric on Tangent Bundles, Ann. Math. Pura. Appl., 150(4), (1988), 1-9.
  • Ocak, F., Salimov, A.A., Geometry of the cotangent bundle with Sasakian metricsand its applications, Proc. Indian Acad. Sci. (Math. Sci.), 124(3), (2014), 427--436.
  • Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York 2013.
  • Salimov, A.A., Cengiz, N., Lifting of Riemannian Metrics to Tensor Bundles, Russian Math. (IZ. VUZ.) 47 (11), (2003), 47-55.
  • Salimov, A.A., Filiz, A., Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterr. J. Math. 8, (2011) 243-255.
  • Sasaki, S., On The Differantial Geometry of Tangent Boundles of Riemannian Manifolds, Tohoku Math. J., 10, (1958), 338-358.
  • Soylu, Y., A Myers-type compactness theorem by the use of Bakry-Emery Ricci tensor, Differ. Geom. Appl., 54, (2017), 245--250.
  • Soylu, Y., A compactness theorem in Riemannian manifolds, J. Geom., 109:20,(2018).
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc, New York 1973.
Year 2019, Volume: 68 Issue: 1, 751 - 761, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464226

Abstract

References

  • Akyol, M.A., Gündüzalp, Y., Semi-Slant Submersions from Almost Product Riemannian Manifolds, Gulf Journal of Mathematics, 4(3), (2016), 15-27.
  • Akyol, M.A., Gündüzalp, Y., Semi-Invariant Semi-Riemannian Submersions, Commun. Fac. Sci. Univ. Ank. Series A1, Volume 67, Number 1, (2018), 80-92.
  • Cengiz, N., Salimov, A.A., Diagonal Lift in the Tensor Bundle and its Applications, Applied Mathematics and Computation, 142, (2003), 309-319.
  • Çayır, H., Lie derivatives of almost contact structure and almost paracontact structure with respect to X^{V} and X^{H} on tangent bundle T(M), Proceedings of the Institute of Mathematics and Mechanics, 42(1), (2016), 38-49.
  • Çayır, H., Tachibana and Vishnevskii Operators Applied to X^{V} and X^{C} in Almost Paracontact Structure on Tangent Bundle T(M), Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 6(1), (2016), 67-82.
  • Çayır, H., Tachibana and Vishnevskii Operators Applied to X^{V} and X^{H} in Almost Paracontact Structure on Tangent Bundle T(M), New Trends in Mathematical Sciences, 4(3), (2016), 105-115.
  • Çayır, H., Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to X^{C} and X^{V} on Tangent Bundle T(M). New Trends in Mathematical Sciences, 4(1), (2016), 153-159.
  • Gudmundsson, S., Kappos, E., On the Geometry of the Tangent Bundles, Expo. Math., 20, (2002), 1-41.
  • Musso, E., Tricerri, F., Riemannian Metric on Tangent Bundles, Ann. Math. Pura. Appl., 150(4), (1988), 1-9.
  • Ocak, F., Salimov, A.A., Geometry of the cotangent bundle with Sasakian metricsand its applications, Proc. Indian Acad. Sci. (Math. Sci.), 124(3), (2014), 427--436.
  • Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York 2013.
  • Salimov, A.A., Cengiz, N., Lifting of Riemannian Metrics to Tensor Bundles, Russian Math. (IZ. VUZ.) 47 (11), (2003), 47-55.
  • Salimov, A.A., Filiz, A., Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterr. J. Math. 8, (2011) 243-255.
  • Sasaki, S., On The Differantial Geometry of Tangent Boundles of Riemannian Manifolds, Tohoku Math. J., 10, (1958), 338-358.
  • Soylu, Y., A Myers-type compactness theorem by the use of Bakry-Emery Ricci tensor, Differ. Geom. Appl., 54, (2017), 245--250.
  • Soylu, Y., A compactness theorem in Riemannian manifolds, J. Geom., 109:20,(2018).
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc, New York 1973.
There are 17 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Haşim Çayır 0000-0003-0348-8665

Publication Date February 1, 2019
Submission Date March 7, 2018
Acceptance Date April 11, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Çayır, H. (2019). Derivatives of Sasakian metric ^{S}g on Cotangent Bundle. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 751-761. https://doi.org/10.31801/cfsuasmas.464226
AMA Çayır H. Derivatives of Sasakian metric ^{S}g on Cotangent Bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):751-761. doi:10.31801/cfsuasmas.464226
Chicago Çayır, Haşim. “Derivatives of Sasakian Metric ^{S}g on Cotangent Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 751-61. https://doi.org/10.31801/cfsuasmas.464226.
EndNote Çayır H (February 1, 2019) Derivatives of Sasakian metric ^{S}g on Cotangent Bundle. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 751–761.
IEEE H. Çayır, “Derivatives of Sasakian metric ^{S}g on Cotangent Bundle”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 751–761, 2019, doi: 10.31801/cfsuasmas.464226.
ISNAD Çayır, Haşim. “Derivatives of Sasakian Metric ^{S}g on Cotangent Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 751-761. https://doi.org/10.31801/cfsuasmas.464226.
JAMA Çayır H. Derivatives of Sasakian metric ^{S}g on Cotangent Bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:751–761.
MLA Çayır, Haşim. “Derivatives of Sasakian Metric ^{S}g on Cotangent Bundle”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 751-6, doi:10.31801/cfsuasmas.464226.
Vancouver Çayır H. Derivatives of Sasakian metric ^{S}g on Cotangent Bundle. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):751-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.