BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 29 - 37, 01.08.2018

Abstract

References

  • Badawi, A., Chin A. Y. M. and Chen, H. V., On rings with near idempotent elements, International J. of Pure and Applied Math 1 (3) (2002), 255-262.
  • Breaz, S., Danchev P. and Zhou, Y., Rings in which every element is either a sum or a diğerence of a nilpotent and an idempotent, preprint arXiv:1412.5544 [math.RA].
  • Chen, H., Strongly nil clean matrices over R[x]=(x2 , Bull. Korean Math. Soc, 49 (3)(2012), 599.
  • Chen, H. and Sheibani, M., Strongly 2-nil-clean rings, J. Algebra Appl., 16 (2017) DOI: 1142/S021949881750178X.
  • Chen, H., On Strongly Nil Clean Matrices, Comm. Algebra, 41 (3) (2013), 1074-1086.
  • Danchev, P.V. and McGovern, W.Wm., Commutative weakly nil clean unital rings, J. Algebra (2015), 410–422.
  • Diesl, A. J., Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, Diesl, A. J., Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • Hirano, Y., Tominaga H. and Yaqub, A., On rings in which every element is uniquely ex- pressible as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40.
  • Khashan, H. A. and Handam, A. H., g(x) nil clean rings, Scientiae Mathematicae Japonicae, , (2) (2016), 145-154.
  • Khashan, H. A. and Handam, A. H., On weakly g(x)-nil clean rings, International J. of Pure and Applied Math, 114 (2) (2017), 191-202.
  • Handam, A. H. and Khashan, H. A., Rings in which elements are the sum of a nilpotent and a root of a …xed polynomial that commute, Open Mathematics, 15 (1), (2017), 420-426.
  • Nagell, T., Introduction to Number Theory. New York: Wiley, p. 157, 1951.
  • Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278.

(WEAKLY)n NIL CLEANNESS OF THE RING Zm

Year 2018, Volume: 67 Issue: 2, 29 - 37, 01.08.2018

Abstract

Let R be an associative ring with identity. For a positive integer n > 2, an element a 2 R is called n potent if a n = a . We define R to be (weakly) n-nil clean if every element in R can be written as a sum (a sum or a difference) of a nilpotent and an npotent
element in R. This concept is actually a generalization of weakly nil clean rings introduced by Danchev and McGovern, [6]. In this paper, we completely determine all n; m 2 N such that the ring of integers modulo m, Zm is (weakly) nnil
clean

References

  • Badawi, A., Chin A. Y. M. and Chen, H. V., On rings with near idempotent elements, International J. of Pure and Applied Math 1 (3) (2002), 255-262.
  • Breaz, S., Danchev P. and Zhou, Y., Rings in which every element is either a sum or a diğerence of a nilpotent and an idempotent, preprint arXiv:1412.5544 [math.RA].
  • Chen, H., Strongly nil clean matrices over R[x]=(x2 , Bull. Korean Math. Soc, 49 (3)(2012), 599.
  • Chen, H. and Sheibani, M., Strongly 2-nil-clean rings, J. Algebra Appl., 16 (2017) DOI: 1142/S021949881750178X.
  • Chen, H., On Strongly Nil Clean Matrices, Comm. Algebra, 41 (3) (2013), 1074-1086.
  • Danchev, P.V. and McGovern, W.Wm., Commutative weakly nil clean unital rings, J. Algebra (2015), 410–422.
  • Diesl, A. J., Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, Diesl, A. J., Nil clean rings, J. Algebra, 383 (2013), 197-211.
  • Hirano, Y., Tominaga H. and Yaqub, A., On rings in which every element is uniquely ex- pressible as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40.
  • Khashan, H. A. and Handam, A. H., g(x) nil clean rings, Scientiae Mathematicae Japonicae, , (2) (2016), 145-154.
  • Khashan, H. A. and Handam, A. H., On weakly g(x)-nil clean rings, International J. of Pure and Applied Math, 114 (2) (2017), 191-202.
  • Handam, A. H. and Khashan, H. A., Rings in which elements are the sum of a nilpotent and a root of a …xed polynomial that commute, Open Mathematics, 15 (1), (2017), 420-426.
  • Nagell, T., Introduction to Number Theory. New York: Wiley, p. 157, 1951.
  • Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278.
There are 13 citations in total.

Details

Other ID JA49ER73YN
Journal Section Research Article
Authors

A.hani Khashan This is me

H.ali Handam This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Khashan, A., & Handam, H. (2018). (WEAKLY)n NIL CLEANNESS OF THE RING Zm. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 29-37.
AMA Khashan A, Handam H. (WEAKLY)n NIL CLEANNESS OF THE RING Zm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):29-37.
Chicago Khashan, A.hani, and H.ali Handam. “(WEAKLY)n NIL CLEANNESS OF THE RING Zm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 29-37.
EndNote Khashan A, Handam H (August 1, 2018) (WEAKLY)n NIL CLEANNESS OF THE RING Zm. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 29–37.
IEEE A. Khashan and H. Handam, “(WEAKLY)n NIL CLEANNESS OF THE RING Zm”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 29–37, 2018.
ISNAD Khashan, A.hani - Handam, H.ali. “(WEAKLY)n NIL CLEANNESS OF THE RING Zm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 29-37.
JAMA Khashan A, Handam H. (WEAKLY)n NIL CLEANNESS OF THE RING Zm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:29–37.
MLA Khashan, A.hani and H.ali Handam. “(WEAKLY)n NIL CLEANNESS OF THE RING Zm”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 29-37.
Vancouver Khashan A, Handam H. (WEAKLY)n NIL CLEANNESS OF THE RING Zm. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):29-37.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.