BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 116 - 125, 01.08.2018

Abstract

References

  • Blair D.E., Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).
  • Blair D.E., Koufogiorgos T. and Papantoniou B.J., Contact metric manifolds satisfyng a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • Cabrerizo J.L., Carriazo A. and Fernandez L.M., Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125-138.
  • Cabrerizo J.L., Carriazo A. and Fernandez L.M., Semi-slant submanifolds of a Sasakian man- ifold, Geom. Dedicata, 78 (1999), 183-199.
  • Carriazo A., Bi-slant immersions, Proceedings of the Integrated Car Rental and Accounts Management System, Kharagpur, West Bengal, India (2000), 88-97.
  • Chen B.Y., Slant immersions, Bull. Aust. Math. Soc., 41 (1990), 135-147.
  • Chen B.Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, (1990).
  • Deshmuk S. and Hussain S.I., Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J., 9(3) (1986), 425-429.
  • Khan V.A., Khan M.A. and Khan K.A., Slant and semi-slant submanifolds of a Kenmotsu manifold, Mathematica Slovaca, 57(5) (2007), 483-494.
  • Kon M., Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor (N.S.), 30 (1976), 239-245.
  • Lotta A., Slant submanifolds in contact geometry, Bull. Math. Soc. Roum., 39 (1996), 198.
  • Papaghiuc N., Semi-slant submanifolds of Kahlerian manifold, An. ¸Stiint. Univ. AI. I. Cuza. Ia¸si. Inform. (N.S.), 9 (1994), 55-61.
  • Siddesha M.S. and Bagewadi C.S., On slant submanifolds of (k; ) manifold, Diğ erential Geometry and Dynamical Systems, 18 (2016), 123-131.

SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD

Year 2018, Volume: 67 Issue: 2, 116 - 125, 01.08.2018

Abstract

In the present paper, we study semi-slant submanifolds of (k; )contact manifold and give conditions for the integrability of invariant and slantdistributions which are involved in the de…nition of semi-slant submanifold.Further, we show the totally geodesicity of such distributions

References

  • Blair D.E., Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).
  • Blair D.E., Koufogiorgos T. and Papantoniou B.J., Contact metric manifolds satisfyng a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • Cabrerizo J.L., Carriazo A. and Fernandez L.M., Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125-138.
  • Cabrerizo J.L., Carriazo A. and Fernandez L.M., Semi-slant submanifolds of a Sasakian man- ifold, Geom. Dedicata, 78 (1999), 183-199.
  • Carriazo A., Bi-slant immersions, Proceedings of the Integrated Car Rental and Accounts Management System, Kharagpur, West Bengal, India (2000), 88-97.
  • Chen B.Y., Slant immersions, Bull. Aust. Math. Soc., 41 (1990), 135-147.
  • Chen B.Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, (1990).
  • Deshmuk S. and Hussain S.I., Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J., 9(3) (1986), 425-429.
  • Khan V.A., Khan M.A. and Khan K.A., Slant and semi-slant submanifolds of a Kenmotsu manifold, Mathematica Slovaca, 57(5) (2007), 483-494.
  • Kon M., Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor (N.S.), 30 (1976), 239-245.
  • Lotta A., Slant submanifolds in contact geometry, Bull. Math. Soc. Roum., 39 (1996), 198.
  • Papaghiuc N., Semi-slant submanifolds of Kahlerian manifold, An. ¸Stiint. Univ. AI. I. Cuza. Ia¸si. Inform. (N.S.), 9 (1994), 55-61.
  • Siddesha M.S. and Bagewadi C.S., On slant submanifolds of (k; ) manifold, Diğ erential Geometry and Dynamical Systems, 18 (2016), 123-131.
There are 13 citations in total.

Details

Other ID JA99FG89AN
Journal Section Research Article
Authors

M.s. Sıddesha This is me

C.s. Bagewadı This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Sıddesha, M., & Bagewadı, C. (2018). SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 116-125.
AMA Sıddesha M, Bagewadı C. SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):116-125.
Chicago Sıddesha, M.s., and C.s. Bagewadı. “SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 116-25.
EndNote Sıddesha M, Bagewadı C (August 1, 2018) SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 116–125.
IEEE M. Sıddesha and C. Bagewadı, “SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 116–125, 2018.
ISNAD Sıddesha, M.s. - Bagewadı, C.s. “SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 116-125.
JAMA Sıddesha M, Bagewadı C. SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:116–125.
MLA Sıddesha, M.s. and C.s. Bagewadı. “SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 116-25.
Vancouver Sıddesha M, Bagewadı C. SEMI-SLANT SUBMANIFOLDS OF(k; :U)- CONTACT MANIFOLD. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):116-25.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.