BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 139 - 146, 01.08.2018

References

  • Becker, J., Löwnersche Diğerentialgleichung und quasiconform fortsetzbare schichte functio- nen, J. Reine Angev. Math. 255 (1972), 23-43.
  • Breaz, D. and Pescar, V., On conditions for univalence of some integral operators, Hacet. J. Math. Stat. 45(2)(2016), 337-342.
  • Ça¼glar, M. and Orhan, H., Some generalizations on the univalence of an integral operator and quasiconformal extensions, Miskolc Math. Notes 14 (1)(2013),49-62.
  • Deniz, E., Univalence criteria for a general integral operator, Filomat 28(1) (2014), 11–19.
  • Deniz, E., On the univalence of two general integral operators, Filomat 29(7) (2015), 1581
  • Deniz, E. and Orhan, H., An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Sklodowska Sect. A 64(2) (2010) 29-35.
  • Frasin, B. A., Univalence of two general integral operators, Filomat 23(3) (2009), 223–229.
  • Frasin, B. A., Univalence criteria for general integral operator, Math. Commun. 16(1) (2011), –124.
  • Nehari, Z., Conformal Mapping, Mc. Graw-Hill Book Comp., New York, 1952. (Dover. Publ. Inc. 1975.)
  • Orhan, H., Raducanu, D. and Ça¼glar, M., Some su¢ cient conditions for the univalence of an integral operator, J. Class. Anal., 5(1)(2014), 61-70.
  • Pascu, N. N. and Pescar, V., New criteria of Kudriasov type univalence, Scripta Scientiarum Mathematicarum, Tomus I, Anno MCMXCVII, 210-215. Pascu, N. N., An improvement of Becker’s univalence criterion, Proceeding of the Commem- orative Session Simion Stoilow, Bra¸sov, (1987), 43-48.
  • Pescar, V., Some integral operators and their univalence, The Journal of Analysis, 5(1997), 162.
  • Pescar, V., On the univalence of an integral operator, Appl. Math. Lett. 23(5) (2010) 615-619.
  • Pescar, V. and Breaz, D., On an integral operator, Appl. Math. Lett. 23(5) (2010) 625-629.
  • Srivastava, H. M., Deniz E. and Orhan, H., Some general univalence critera for a family of integral operators, Appl. Math. Comp. 215(2010) 3696-3701.
  • Current address : Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey

ON UNIVALENCE OF INTEGRAL OPERATORS

Year 2018, Volume: 67 Issue: 2, 139 - 146, 01.08.2018

References

  • Becker, J., Löwnersche Diğerentialgleichung und quasiconform fortsetzbare schichte functio- nen, J. Reine Angev. Math. 255 (1972), 23-43.
  • Breaz, D. and Pescar, V., On conditions for univalence of some integral operators, Hacet. J. Math. Stat. 45(2)(2016), 337-342.
  • Ça¼glar, M. and Orhan, H., Some generalizations on the univalence of an integral operator and quasiconformal extensions, Miskolc Math. Notes 14 (1)(2013),49-62.
  • Deniz, E., Univalence criteria for a general integral operator, Filomat 28(1) (2014), 11–19.
  • Deniz, E., On the univalence of two general integral operators, Filomat 29(7) (2015), 1581
  • Deniz, E. and Orhan, H., An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Sklodowska Sect. A 64(2) (2010) 29-35.
  • Frasin, B. A., Univalence of two general integral operators, Filomat 23(3) (2009), 223–229.
  • Frasin, B. A., Univalence criteria for general integral operator, Math. Commun. 16(1) (2011), –124.
  • Nehari, Z., Conformal Mapping, Mc. Graw-Hill Book Comp., New York, 1952. (Dover. Publ. Inc. 1975.)
  • Orhan, H., Raducanu, D. and Ça¼glar, M., Some su¢ cient conditions for the univalence of an integral operator, J. Class. Anal., 5(1)(2014), 61-70.
  • Pascu, N. N. and Pescar, V., New criteria of Kudriasov type univalence, Scripta Scientiarum Mathematicarum, Tomus I, Anno MCMXCVII, 210-215. Pascu, N. N., An improvement of Becker’s univalence criterion, Proceeding of the Commem- orative Session Simion Stoilow, Bra¸sov, (1987), 43-48.
  • Pescar, V., Some integral operators and their univalence, The Journal of Analysis, 5(1997), 162.
  • Pescar, V., On the univalence of an integral operator, Appl. Math. Lett. 23(5) (2010) 615-619.
  • Pescar, V. and Breaz, D., On an integral operator, Appl. Math. Lett. 23(5) (2010) 625-629.
  • Srivastava, H. M., Deniz E. and Orhan, H., Some general univalence critera for a family of integral operators, Appl. Math. Comp. 215(2010) 3696-3701.
  • Current address : Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
There are 16 citations in total.

Details

Other ID JA47RK69EP
Journal Section Research Article
Authors

Fatma Sağsöz This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Sağsöz, F. (2018). ON UNIVALENCE OF INTEGRAL OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 139-146.
AMA Sağsöz F. ON UNIVALENCE OF INTEGRAL OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):139-146.
Chicago Sağsöz, Fatma. “ON UNIVALENCE OF INTEGRAL OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 139-46.
EndNote Sağsöz F (August 1, 2018) ON UNIVALENCE OF INTEGRAL OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 139–146.
IEEE F. Sağsöz, “ON UNIVALENCE OF INTEGRAL OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 139–146, 2018.
ISNAD Sağsöz, Fatma. “ON UNIVALENCE OF INTEGRAL OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 139-146.
JAMA Sağsöz F. ON UNIVALENCE OF INTEGRAL OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:139–146.
MLA Sağsöz, Fatma. “ON UNIVALENCE OF INTEGRAL OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 139-46.
Vancouver Sağsöz F. ON UNIVALENCE OF INTEGRAL OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):139-46.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.