BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 195 - 208, 01.08.2018

Abstract

References

  • Abel, U., Gupta, V. and Ivan, M., Asymptotic approximation of functions and their deriva- tives by generalized Baskakov-Szász-Durrmeyer operators, Analysis Theory Appl. 21 (2005), 26.
  • Acar, T., Aral, A., On pointwise convergence of q-Bernstein operators and their q-derivatives, Numer. Funct. Anal. Optim., 36 (3), (2015), 287-304.
  • Acar, T., Agrawal, P. N. and Neer, T., Bézier variant of the Bernstein-Durrmeyer type operators, Results. Math., DOI: 10.1007/s00025-016-0639-3.
  • Agrawal, P. N., Gupta, V., Kumar, A. S. and Kajla, A., Generalized Baskakov-Szász type operators, Appl. Math. Comput. 236 (2014), 311-324.
  • Agrawal, P. N., Ispir, N. and Kajla, A., Approximation properties of Bézier-summation- integral type operators based on Polya-Bernstein functions, Appl. Math. Comput. 259 (2015) 539.
  • Bojanic, R., Cheng, F. H., Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation, J. Math. Anal. Appl. 141 (1) (1989), 136-151.
  • Bojanic, R., Cheng, F., Rate of convergence of Hermite-Fejer polynomials for functions with derivatives of bounded variation, Acta Math. Hungar. 59 (1992), 91-102.
  • Cárdenas-Morales, D., Garrancho, P. and Ra¸sa, I., Asymptotic formulae via a Korovkin type result, Abstr. Appl. Anal. (2012). Art.ID 217464, 12pp.
  • Chang, G., Generalized Bernstein-Bezier polynomials, J. Comput. Math. 1 (4) (1983), 322- Chen, a http://dx.doi.org/10.1016/j.jmaa.2016.12.075 Z. Bernstein operators, of functions by new J. Math.Anal.Appl.(2017),
  • Ditzian, Z., Totik, V., Moduli of Smoothness, Springer, New York, (1987).
  • Gadjiev, A. D., Ghorbanalizadeh, A. M., Approximation properties of a new type Bernstein- Stancu polynomials of one and two variables, Appl. Math. Comput. 216 (2010) 890-901.
  • Guo, S. S., Liu, G. F. and Song, Z. J., Approximation by Bernstein-Durrmeyer-Bezier oper- ators in Lpspaces, Acta Math. Sci. Ser. A Chin. Ed. 30 (6) (2010), 1424-1434.
  • Gupta, V., Agarwal, R. P., Convergence Estimates in Approximation Theory, Springer, Berlin (2014).
  • Gupta, V., Karsli, H., Rate of convergence for the Bézier variant of the MKZD operators, Georgian Math. J. 14 (2007), 651-659.
  • Gupta, V., Vasishtha, V. and Gupta, M. K., Rate of convergence of summation-integral type operators with derivatives of bounded variation, J. Inequal. Pure Appl. Math. 4 (2) (2003), Article 34.
  • Ispir, N., Rate of convergence of generalized rational type Baskakov operators, Math. Comput. Modelling 46 (2007), 625-631.
  • Jain, S., Gangwar, R. K., Approximation degree for generalized integral operators, Rev. Un. Mat. Argentina 50 (1) (2009), 61-68.
  • Kajla, A., Acar, T., Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Mathematical Notes (To Appear). Kajla, A., Acu, A. M. and Agrawal, P. N., Baskakov-Szász type operators based on inverse Pólya-Eggenberger distribution, Ann. Funct. Anal. 8 (2017) 106-123.
  • Karsli, H., Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation, Math. Comput. Modelling 45 (2007), 617-624.
  • Neer, T., Acu, A. M. and Agrawal, P. N., Bézier variant of genuine-Durrmeyer type operators based on Pólya distribution. Carpathian J. Math. 1 (2017).
  • Mursaleen, M., Ansari, K. J. and Khan, A., On (p; q) analogue of Bernstein operators, Appl. Math. Comput. 266 (2015) 874-882.
  • Ren, M.-Y., Zeng, X. M., Approximation of a kind of new type Bézier operators, J. Inequal. Appl. (2015) 2015: 412 DOI 10.1186/s13660-015-0940-9
  • Srivastava, H. M., Gupta, V., Rate of convergence for the Bézier variant of the Bleimann- Butzer-Hahn operators, Appl. Math. Letters, 18 (2005) 849-857.
  • Wang, P., Zhou, Y., A new estimate on the rate of convergence of Durrmeyer-Bezier Opera- tors, J. Inequal. Appl. 2009, Article ID 702680.
  • Yang, M., Yu, D. and Zhou, P., On the approximation by operators of Bernstein-Stancu types, Appl. Math. Comput. 246 (2014) 79-87.
  • Zeng, X. M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.
  • Zeng, X. M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II, J. Approx. Theory 104 (2000), 330-344.
  • Zeng, X. M., Piriou, A., On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions. J. Approx. Theory 95 (1998), 369-387.
  • Current address : Tuncer Acar: Kirikkale University, Faculty of Science and Arts, Department of Mathematics, Yahsihan, 71450, Kirikkale, Turkey
  • E-mail address : tunceracar@ymail.com ORCID Address: Current address : Arun Kajla: Department of Mathematics, Central University of Haryana, Haryana-123031, India
  • E-mail address : rachitkajla47@gmail.com ORCID Address: http://orcid.org/0000-0003-4273-4830

BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS

Year 2018, Volume: 67 Issue: 2, 195 - 208, 01.08.2018

Abstract

In this note we construct the B€zier variant of summation integral
type operators based on a non-negative real parameter. We present a direct
approximation theorem by means of the first order modulus of smoothness and
the rate of convergence for absolutely continuous functions having a derivative
equivalent to a function of bounded variation. In the last section, we study
the quantitative Voronovska ja type theorem

References

  • Abel, U., Gupta, V. and Ivan, M., Asymptotic approximation of functions and their deriva- tives by generalized Baskakov-Szász-Durrmeyer operators, Analysis Theory Appl. 21 (2005), 26.
  • Acar, T., Aral, A., On pointwise convergence of q-Bernstein operators and their q-derivatives, Numer. Funct. Anal. Optim., 36 (3), (2015), 287-304.
  • Acar, T., Agrawal, P. N. and Neer, T., Bézier variant of the Bernstein-Durrmeyer type operators, Results. Math., DOI: 10.1007/s00025-016-0639-3.
  • Agrawal, P. N., Gupta, V., Kumar, A. S. and Kajla, A., Generalized Baskakov-Szász type operators, Appl. Math. Comput. 236 (2014), 311-324.
  • Agrawal, P. N., Ispir, N. and Kajla, A., Approximation properties of Bézier-summation- integral type operators based on Polya-Bernstein functions, Appl. Math. Comput. 259 (2015) 539.
  • Bojanic, R., Cheng, F. H., Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation, J. Math. Anal. Appl. 141 (1) (1989), 136-151.
  • Bojanic, R., Cheng, F., Rate of convergence of Hermite-Fejer polynomials for functions with derivatives of bounded variation, Acta Math. Hungar. 59 (1992), 91-102.
  • Cárdenas-Morales, D., Garrancho, P. and Ra¸sa, I., Asymptotic formulae via a Korovkin type result, Abstr. Appl. Anal. (2012). Art.ID 217464, 12pp.
  • Chang, G., Generalized Bernstein-Bezier polynomials, J. Comput. Math. 1 (4) (1983), 322- Chen, a http://dx.doi.org/10.1016/j.jmaa.2016.12.075 Z. Bernstein operators, of functions by new J. Math.Anal.Appl.(2017),
  • Ditzian, Z., Totik, V., Moduli of Smoothness, Springer, New York, (1987).
  • Gadjiev, A. D., Ghorbanalizadeh, A. M., Approximation properties of a new type Bernstein- Stancu polynomials of one and two variables, Appl. Math. Comput. 216 (2010) 890-901.
  • Guo, S. S., Liu, G. F. and Song, Z. J., Approximation by Bernstein-Durrmeyer-Bezier oper- ators in Lpspaces, Acta Math. Sci. Ser. A Chin. Ed. 30 (6) (2010), 1424-1434.
  • Gupta, V., Agarwal, R. P., Convergence Estimates in Approximation Theory, Springer, Berlin (2014).
  • Gupta, V., Karsli, H., Rate of convergence for the Bézier variant of the MKZD operators, Georgian Math. J. 14 (2007), 651-659.
  • Gupta, V., Vasishtha, V. and Gupta, M. K., Rate of convergence of summation-integral type operators with derivatives of bounded variation, J. Inequal. Pure Appl. Math. 4 (2) (2003), Article 34.
  • Ispir, N., Rate of convergence of generalized rational type Baskakov operators, Math. Comput. Modelling 46 (2007), 625-631.
  • Jain, S., Gangwar, R. K., Approximation degree for generalized integral operators, Rev. Un. Mat. Argentina 50 (1) (2009), 61-68.
  • Kajla, A., Acar, T., Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Mathematical Notes (To Appear). Kajla, A., Acu, A. M. and Agrawal, P. N., Baskakov-Szász type operators based on inverse Pólya-Eggenberger distribution, Ann. Funct. Anal. 8 (2017) 106-123.
  • Karsli, H., Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation, Math. Comput. Modelling 45 (2007), 617-624.
  • Neer, T., Acu, A. M. and Agrawal, P. N., Bézier variant of genuine-Durrmeyer type operators based on Pólya distribution. Carpathian J. Math. 1 (2017).
  • Mursaleen, M., Ansari, K. J. and Khan, A., On (p; q) analogue of Bernstein operators, Appl. Math. Comput. 266 (2015) 874-882.
  • Ren, M.-Y., Zeng, X. M., Approximation of a kind of new type Bézier operators, J. Inequal. Appl. (2015) 2015: 412 DOI 10.1186/s13660-015-0940-9
  • Srivastava, H. M., Gupta, V., Rate of convergence for the Bézier variant of the Bleimann- Butzer-Hahn operators, Appl. Math. Letters, 18 (2005) 849-857.
  • Wang, P., Zhou, Y., A new estimate on the rate of convergence of Durrmeyer-Bezier Opera- tors, J. Inequal. Appl. 2009, Article ID 702680.
  • Yang, M., Yu, D. and Zhou, P., On the approximation by operators of Bernstein-Stancu types, Appl. Math. Comput. 246 (2014) 79-87.
  • Zeng, X. M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.
  • Zeng, X. M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II, J. Approx. Theory 104 (2000), 330-344.
  • Zeng, X. M., Piriou, A., On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions. J. Approx. Theory 95 (1998), 369-387.
  • Current address : Tuncer Acar: Kirikkale University, Faculty of Science and Arts, Department of Mathematics, Yahsihan, 71450, Kirikkale, Turkey
  • E-mail address : tunceracar@ymail.com ORCID Address: Current address : Arun Kajla: Department of Mathematics, Central University of Haryana, Haryana-123031, India
  • E-mail address : rachitkajla47@gmail.com ORCID Address: http://orcid.org/0000-0003-4273-4830
There are 31 citations in total.

Details

Other ID JA82TM67AK
Journal Section Research Article
Authors

Tuncer Acar This is me

Arun Kajla This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Acar, T., & Kajla, A. (2018). BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 195-208.
AMA Acar T, Kajla A. BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):195-208.
Chicago Acar, Tuncer, and Arun Kajla. “BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 195-208.
EndNote Acar T, Kajla A (August 1, 2018) BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 195–208.
IEEE T. Acar and A. Kajla, “BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 195–208, 2018.
ISNAD Acar, Tuncer - Kajla, Arun. “BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 195-208.
JAMA Acar T, Kajla A. BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:195–208.
MLA Acar, Tuncer and Arun Kajla. “BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 195-08.
Vancouver Acar T, Kajla A. BLENDING TYPE APPROXIMATION BY BÉZIER-SUMMATION-INTEGRAL TYPE OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):195-208.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.