BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 220 - 228, 01.08.2018

Abstract

References

  • Andrews, G. E., Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart. (1) (2004), 3–19.
  • Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation (2014) 526–538.
  • Carlitz, L., Fibonacci notes 4: q-Fibonacci Polynomials. The Fibonacci Quarterly 13(2) (1975), 97-102.
  • Cigler, J., A new class of q-Fibonacci polynomials, Electron. J. Comb.10 (2003), ArticleR19.
  • Cigler, J., Some beautiful q-analogues of Fibonacci and Lucas polynomials, arXiv:11042699.
  • Edson, M. and Yayenie, O., A new generalizations of Fibonacci sequences and extended Binet’s Formula, Integers 9, (A48) (2009), 639-654.
  • Jia, C. Z., Liu, H. M., and Wang, T. M., q-Analogs of Generalized Fibonacci and Lucas Polynomials, The Fibonacci Quarterly (451) 2007, 26-34.
  • Panario, D., Sahin, M. and Wang, Q., A family of Fibonacci-like conditional sequences, Integers 13 (2013).
  • Ramírez, J. L., Bi-periodic incomplete Fibonacci sequences, Ann. Math. Inform. 42(2013), –92.
  • Ramírez, J. L. and Sirvent, V. F., A q-Analoque of the Biperiodic Fibonacci Sequence, Journal of Integer Sequences, Vol. 19 (2016).
  • Sahin, M., The generating function of a family of the sequences in terms of the continuant, Applied Mathematics and Computation 217 (2011) 5416–5420.
  • Sahin, M., The Gelin-Cesaro identity in some conditional sequences, Hacet. J. Math. Stat. (6) (2011), 855-861.
  • Schur, I., Ein beitrag zur additiven zahlentheorie. Sitzungsber, Akad. Wissencsh. Berlin, Phy.-Math. Klasse (1917), 302-321.
  • Tan, E. and Ekin, A. B., Bi-periodic Incomplete Lucas Sequences, Ars Combinatoria. 123 (2015), 371-380.
  • Tan, E. and Ekin, A. B., Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes. 18 (1) (2017), 469–477.
  • Tan,E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria. (2017), 107-113.
  • Tan, E., Yilmaz, S. and Sahin, M., On a new generalization of Fibonacci quaternions, Chaos, Solitons and Fractals 82 (2016) 1–4.
  • Tan, E., Yilmaz, S. and Sahin, M., A note on bi-periodic Fibonacci and Lucas quaternions, Chaos, Solitons and Fractals 85 (2016) 138–142.
  • Yayenie, O., A note on generalized Fibonacci sequeence, Appl. Math. Comput. 217 (2011) 5611.
  • E-mail address : etan@ankara.edu.tr Current address : Department of Mathematics, Faculty of Sciences, Ankara University, 06100
  • Tandogan Ankara, Turkey ORCID Address: http://orcid.org/0000-0002-8381-8750

A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE

Year 2018, Volume: 67 Issue: 2, 220 - 228, 01.08.2018

Abstract

In this paper, we introduce a q-analog of the bi-periodic Lucassequence, called as the q-bi-periodic Lucas sequence, and give some identities related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we givea matrix representation for the q-bi-periodic Fibonacci sequence which allowus to obtain several properties of this sequence in a simple way. Moreover,by using the explicit formulas for the q-bi-periodic Fibonacci and Lucas sequences, we introduce q-analogs of the bi-periodic incomplete Fibonacci andLucas sequences and give a relation between them

References

  • Andrews, G. E., Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart. (1) (2004), 3–19.
  • Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation (2014) 526–538.
  • Carlitz, L., Fibonacci notes 4: q-Fibonacci Polynomials. The Fibonacci Quarterly 13(2) (1975), 97-102.
  • Cigler, J., A new class of q-Fibonacci polynomials, Electron. J. Comb.10 (2003), ArticleR19.
  • Cigler, J., Some beautiful q-analogues of Fibonacci and Lucas polynomials, arXiv:11042699.
  • Edson, M. and Yayenie, O., A new generalizations of Fibonacci sequences and extended Binet’s Formula, Integers 9, (A48) (2009), 639-654.
  • Jia, C. Z., Liu, H. M., and Wang, T. M., q-Analogs of Generalized Fibonacci and Lucas Polynomials, The Fibonacci Quarterly (451) 2007, 26-34.
  • Panario, D., Sahin, M. and Wang, Q., A family of Fibonacci-like conditional sequences, Integers 13 (2013).
  • Ramírez, J. L., Bi-periodic incomplete Fibonacci sequences, Ann. Math. Inform. 42(2013), –92.
  • Ramírez, J. L. and Sirvent, V. F., A q-Analoque of the Biperiodic Fibonacci Sequence, Journal of Integer Sequences, Vol. 19 (2016).
  • Sahin, M., The generating function of a family of the sequences in terms of the continuant, Applied Mathematics and Computation 217 (2011) 5416–5420.
  • Sahin, M., The Gelin-Cesaro identity in some conditional sequences, Hacet. J. Math. Stat. (6) (2011), 855-861.
  • Schur, I., Ein beitrag zur additiven zahlentheorie. Sitzungsber, Akad. Wissencsh. Berlin, Phy.-Math. Klasse (1917), 302-321.
  • Tan, E. and Ekin, A. B., Bi-periodic Incomplete Lucas Sequences, Ars Combinatoria. 123 (2015), 371-380.
  • Tan, E. and Ekin, A. B., Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes. 18 (1) (2017), 469–477.
  • Tan,E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria. (2017), 107-113.
  • Tan, E., Yilmaz, S. and Sahin, M., On a new generalization of Fibonacci quaternions, Chaos, Solitons and Fractals 82 (2016) 1–4.
  • Tan, E., Yilmaz, S. and Sahin, M., A note on bi-periodic Fibonacci and Lucas quaternions, Chaos, Solitons and Fractals 85 (2016) 138–142.
  • Yayenie, O., A note on generalized Fibonacci sequeence, Appl. Math. Comput. 217 (2011) 5611.
  • E-mail address : etan@ankara.edu.tr Current address : Department of Mathematics, Faculty of Sciences, Ankara University, 06100
  • Tandogan Ankara, Turkey ORCID Address: http://orcid.org/0000-0002-8381-8750
There are 21 citations in total.

Details

Other ID JA89FC78EU
Journal Section Research Article
Authors

Elif Tan This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Tan, E. (2018). A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 220-228.
AMA Tan E. A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):220-228.
Chicago Tan, Elif. “A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 220-28.
EndNote Tan E (August 1, 2018) A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 220–228.
IEEE E. Tan, “A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 220–228, 2018.
ISNAD Tan, Elif. “A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 220-228.
JAMA Tan E. A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:220–228.
MLA Tan, Elif. “A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 220-8.
Vancouver Tan E. A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):220-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.