BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 229 - 241, 01.08.2018

Abstract

References

  • Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pasi…c Journal of Mathematics (1972), 60(2).
  • Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Heidelberg, 2010.
  • Annaby M.H., Mansour Z.S., q-Taylor and interpolation series for Jackson q-diğerence oper- ators, Journal of Mathematical Analysis and Applications 344 (2008), 472-483.
  • Budakçı G., Di¸sibüyük Ç., Goldman R., Oruç H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathe- matics 282 (2015), 17-33.
  • Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Appli- cations 47 (2004), 281-300.
  • Goldman, R., Simeonov, P. Generalized quantum splines, Computer Aided Geometric Design (2016), http://dx.doi.org/10.1016/j.cagd.2016.02.019.
  • Hammerlin G.,Hoğmann K., Numerical Mathematics. Springer-Verlag, New York, 1991.
  • Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computaional and Applied Mathematics 153 (2003), 259-272.
  • Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag, 2002.
  • Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics a-Mathematical and Theoretical 47(4) (2014), 045204.
  • Oruç, H. & Phillips, G.M. q-Bernstein polynomials and Bèzier curves. Journal of Computa- tional and Applied Mathematics, 151 (2003) 1-12.
  • Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York, Phillips, G.M., Survey of results on the q-Bernstein polynomials. IMA Journal of Numerical Analysis, 30(1) (2010), 277-288.
  • Powell M.J.D., Approximation Theory and Methods. Cambridge University Press, 1981.
  • Rajkovi´c P. M., Stankovi´c M. S.,Marinkovi´c S. D., Mean value theorems in q-calculus, Pro- ceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik 54(3-4) (2002), 171–178.
  • Simeonov P. , Za…ris V., Goldman R., q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, Journal of Approximation Theory 164(1) (2012), 77-104.
  • Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics Vol. 53 (2013), pp. 193-223.
  • Tariboon J., Ntouyas S.K., Quantum integral inequalities on …nite intervals, Journal of In- equalities and Applications (2014), 2014:121.
  • Current address : Gülter Budakçı: Graduate School of Natural and Applied Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
  • E-mail address : gulter.budakci@deu.edu.tr ORCID Address: Current address : Halil Oruç: Department of Mathematics, Faculty of Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
  • E-mail address : halil.oruc@deu.edu.tr ORCID Address: http://orcid.org/0000-0002-8262-1892

A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS

Year 2018, Volume: 67 Issue: 2, 229 - 241, 01.08.2018

Abstract

Based on the q-Taylor Theorem, we introduce a more general form of the Peano kernel (q-Peano) which is also applicable to non-differentiable functions. Then we show that quantum B-splines are the q-Peano kernels of divided differences. We also give applications to polynomial interpolation and construct examples in which classical remainder theory fails whereas q-Peano kernel works

References

  • Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pasi…c Journal of Mathematics (1972), 60(2).
  • Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Heidelberg, 2010.
  • Annaby M.H., Mansour Z.S., q-Taylor and interpolation series for Jackson q-diğerence oper- ators, Journal of Mathematical Analysis and Applications 344 (2008), 472-483.
  • Budakçı G., Di¸sibüyük Ç., Goldman R., Oruç H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathe- matics 282 (2015), 17-33.
  • Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Appli- cations 47 (2004), 281-300.
  • Goldman, R., Simeonov, P. Generalized quantum splines, Computer Aided Geometric Design (2016), http://dx.doi.org/10.1016/j.cagd.2016.02.019.
  • Hammerlin G.,Hoğmann K., Numerical Mathematics. Springer-Verlag, New York, 1991.
  • Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computaional and Applied Mathematics 153 (2003), 259-272.
  • Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag, 2002.
  • Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics a-Mathematical and Theoretical 47(4) (2014), 045204.
  • Oruç, H. & Phillips, G.M. q-Bernstein polynomials and Bèzier curves. Journal of Computa- tional and Applied Mathematics, 151 (2003) 1-12.
  • Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York, Phillips, G.M., Survey of results on the q-Bernstein polynomials. IMA Journal of Numerical Analysis, 30(1) (2010), 277-288.
  • Powell M.J.D., Approximation Theory and Methods. Cambridge University Press, 1981.
  • Rajkovi´c P. M., Stankovi´c M. S.,Marinkovi´c S. D., Mean value theorems in q-calculus, Pro- ceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik 54(3-4) (2002), 171–178.
  • Simeonov P. , Za…ris V., Goldman R., q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, Journal of Approximation Theory 164(1) (2012), 77-104.
  • Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics Vol. 53 (2013), pp. 193-223.
  • Tariboon J., Ntouyas S.K., Quantum integral inequalities on …nite intervals, Journal of In- equalities and Applications (2014), 2014:121.
  • Current address : Gülter Budakçı: Graduate School of Natural and Applied Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
  • E-mail address : gulter.budakci@deu.edu.tr ORCID Address: Current address : Halil Oruç: Department of Mathematics, Faculty of Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
  • E-mail address : halil.oruc@deu.edu.tr ORCID Address: http://orcid.org/0000-0002-8262-1892
There are 20 citations in total.

Details

Other ID JA48FF88TR
Journal Section Research Article
Authors

Gülter Budakçı This is me

Halil Oruç This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Budakçı, G., & Oruç, H. (2018). A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 229-241.
AMA Budakçı G, Oruç H. A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):229-241.
Chicago Budakçı, Gülter, and Halil Oruç. “A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 229-41.
EndNote Budakçı G, Oruç H (August 1, 2018) A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 229–241.
IEEE G. Budakçı and H. Oruç, “A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 229–241, 2018.
ISNAD Budakçı, Gülter - Oruç, Halil. “A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 229-241.
JAMA Budakçı G, Oruç H. A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:229–241.
MLA Budakçı, Gülter and Halil Oruç. “A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 229-41.
Vancouver Budakçı G, Oruç H. A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):229-41.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.