Year 2018,
Volume: 67 Issue: 2, 229 - 241, 01.08.2018
Gülter Budakçı
Halil Oruç
References
- Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pasi…c Journal of Mathematics (1972), 60(2).
- Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Heidelberg, 2010.
- Annaby M.H., Mansour Z.S., q-Taylor and interpolation series for Jackson q-diğerence oper- ators, Journal of Mathematical Analysis and Applications 344 (2008), 472-483.
- Budakçı G., Di¸sibüyük Ç., Goldman R., Oruç H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathe- matics 282 (2015), 17-33.
- Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Appli- cations 47 (2004), 281-300.
- Goldman, R., Simeonov, P. Generalized quantum splines, Computer Aided Geometric Design (2016), http://dx.doi.org/10.1016/j.cagd.2016.02.019.
- Hammerlin G.,Hoğmann K., Numerical Mathematics. Springer-Verlag, New York, 1991.
- Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computaional and Applied Mathematics 153 (2003), 259-272.
- Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag, 2002.
- Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics a-Mathematical and Theoretical 47(4) (2014), 045204.
- Oruç, H. & Phillips, G.M. q-Bernstein polynomials and Bèzier curves. Journal of Computa- tional and Applied Mathematics, 151 (2003) 1-12.
- Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York, Phillips, G.M., Survey of results on the q-Bernstein polynomials. IMA Journal of Numerical Analysis, 30(1) (2010), 277-288.
- Powell M.J.D., Approximation Theory and Methods. Cambridge University Press, 1981.
- Rajkovi´c P. M., Stankovi´c M. S.,Marinkovi´c S. D., Mean value theorems in q-calculus, Pro- ceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik 54(3-4) (2002), 171–178.
- Simeonov P. , Za…ris V., Goldman R., q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, Journal of Approximation Theory 164(1) (2012), 77-104.
- Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics Vol. 53 (2013), pp. 193-223.
- Tariboon J., Ntouyas S.K., Quantum integral inequalities on …nite intervals, Journal of In- equalities and Applications (2014), 2014:121.
- Current address : Gülter Budakçı: Graduate School of Natural and Applied Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
- E-mail address : gulter.budakci@deu.edu.tr ORCID Address: Current address : Halil Oruç: Department of Mathematics, Faculty of Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
- E-mail address : halil.oruc@deu.edu.tr ORCID Address: http://orcid.org/0000-0002-8262-1892
A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS
Year 2018,
Volume: 67 Issue: 2, 229 - 241, 01.08.2018
Gülter Budakçı
Halil Oruç
Abstract
Based on the q-Taylor Theorem, we introduce a more general form of the Peano kernel (q-Peano) which is also applicable to non-differentiable functions. Then we show that quantum B-splines are the q-Peano kernels of divided differences. We also give applications to polynomial interpolation and construct examples in which classical remainder theory fails whereas q-Peano kernel works
References
- Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pasi…c Journal of Mathematics (1972), 60(2).
- Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Heidelberg, 2010.
- Annaby M.H., Mansour Z.S., q-Taylor and interpolation series for Jackson q-diğerence oper- ators, Journal of Mathematical Analysis and Applications 344 (2008), 472-483.
- Budakçı G., Di¸sibüyük Ç., Goldman R., Oruç H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathe- matics 282 (2015), 17-33.
- Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Appli- cations 47 (2004), 281-300.
- Goldman, R., Simeonov, P. Generalized quantum splines, Computer Aided Geometric Design (2016), http://dx.doi.org/10.1016/j.cagd.2016.02.019.
- Hammerlin G.,Hoğmann K., Numerical Mathematics. Springer-Verlag, New York, 1991.
- Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computaional and Applied Mathematics 153 (2003), 259-272.
- Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag, 2002.
- Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics a-Mathematical and Theoretical 47(4) (2014), 045204.
- Oruç, H. & Phillips, G.M. q-Bernstein polynomials and Bèzier curves. Journal of Computa- tional and Applied Mathematics, 151 (2003) 1-12.
- Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York, Phillips, G.M., Survey of results on the q-Bernstein polynomials. IMA Journal of Numerical Analysis, 30(1) (2010), 277-288.
- Powell M.J.D., Approximation Theory and Methods. Cambridge University Press, 1981.
- Rajkovi´c P. M., Stankovi´c M. S.,Marinkovi´c S. D., Mean value theorems in q-calculus, Pro- ceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik 54(3-4) (2002), 171–178.
- Simeonov P. , Za…ris V., Goldman R., q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, Journal of Approximation Theory 164(1) (2012), 77-104.
- Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics Vol. 53 (2013), pp. 193-223.
- Tariboon J., Ntouyas S.K., Quantum integral inequalities on …nite intervals, Journal of In- equalities and Applications (2014), 2014:121.
- Current address : Gülter Budakçı: Graduate School of Natural and Applied Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
- E-mail address : gulter.budakci@deu.edu.tr ORCID Address: Current address : Halil Oruç: Department of Mathematics, Faculty of Sciences,Dokuz Eylül University, Tınaztepe Kampüsü, Buca, 35390 Izmir, Turkey.
- E-mail address : halil.oruc@deu.edu.tr ORCID Address: http://orcid.org/0000-0002-8262-1892